Хлорирование питьевой воды. Лабораторная работа

11.02.10

Чем опасно хлорирование водопроводной воды?

Хлорирование воды - наиболее распространённый способ обеззараживания питьевой воды с применением газообразного хлора или хлорсодержащих соединений, вступающих в реакцию с водой или растворенными в ней солями. В результате взаимодействия хлора с протеинами и аминосоединениями, содержащимися в оболочке бактерий и их внутриклеточном веществе, происходят окислительные процессы, химические изменения внутриклеточного вещества, распад структуры клеток и гибель бактерий и микроорганизмов.

Дезинфекция (обеззараживание) питьевой воды осуществляется за счёт дозирования хлора, двуокиси хлора, хлорамина и хлорной извести (не путать с термином очистка питьевой воды от извести). Необходимая доза дозируемого вещества устанавливается пробным хлорированием воды: она определяется хлорпоглощаемостью воды (количество хлора, необходимое для связывания содержащихся в воде органических соединений).

С целью уничтожения микробов хлор вводят с избытком из того расчёта, чтобы через 30 мин после хлорирования воды содержание остаточного хлора было не менее 0,3 мг/л. В некоторых случаях проводится двойное хлорирование воды – до фильтрации и после чистки воды. Также при эпидемиологических катастрофах проводится суперхлорирование с последующим дехлорированием воды.

Для хлорирования воды на водопроводных очистных станциях используется жидкий хлор и хлорная известь (для станций малой производительности).
Хлорирование воды жидким хлором. При введении хлора в воду образуются хлорноватистая и соляная кислоты

НОС1 ч* Н+ + ОС1-.

Получающиеся в результате диссоциации хлорноватистой кислоты гипохлоритные ионы ОС1~ обладают наряду с недиссоциированными молекулами хлорноватистой кислоты бактерицидным свойством.

Сумму С12+НОС1+ОС1- называют свободным активным хлором.

При наличии в воде аммонийных соединений или при специальном введении в воду аммиака (аммонизация воды - см. § 114) образуются монохлорамины NH2CI и дихлорамины NHCb, также оказывающие бактерицидное действие, несколько меньшее, чем свободный хлор, но более продолжительное. Хлор в виде хлораминов в отличие от свободного называется с в я з а н н ы м активным хлором.

Количество активного хлора, необходимого для обеззараживания воды, должно определяться не по количеству болезнетворных бактерий, а по всему количеству органических веществ и микроорганизмов (а также и неорганических веществ, способных к окислению), которые могут находиться в хлорируемой воде.

Правильное назначение дозы хлора является исключительно важным. Недостаточная доза хлора может привести к тому, что он не окажет необходимого бактерицидного действия; излишняя доза хлора ухудшает вкусовые качества воды. Поэтому доза хлора должна быть установлена в зависимости от индивидуальных свойств очищаемой воды на основании опытов с этой водой.

Расчетная доза хлора при проектировании обеззараживающей установки должна быть принята исходя из необходимости очистки воды в период ее максимального загрязнения (например, в период паводков).

Показателем достаточности принятой дозы хлора служит наличие в воде так называемого остаточного хлора (остающегося в воде от введенной дозы после окисления находящихся в воде веществ). Согласно требованиям ГОСТ 2874-73, концентрация остаточного хлора в воде перед поступлением ее в сеть должна находиться в пределах 0,3- 0,5 мг/л.
Содержание в питьевой воде свободного остаточного хлора регламентируется СанПиН 2.1.4.1074-01 "Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества" (содержание в воде свободного остаточного хлора 0,3 – 0,5 мг/л) и СанПин 2.1.4.1116 – 02 «Питьевая вода. Гигиенические требования к качеству воды, расфасованной в емкости. Контроль качества» (содержание в воде свободного остаточного хлора не более 0,05 мг/л). Лимитирующий признак вредности вещества, по которому установлен норматив – органолептический (хотя это далеко не так…).

Хлор – это злейший враг нашей современности с тех пор, как он стал применяться в качестве дезинфектора питьевой воды с 1904 года. Предотвращая одни заболевания, он является причиной появления других, более страшных болезней: проблемы с сердцем, рак, а также преждевременная старость. По иронии даже хлор, широко применяемый в качестве дезинфектора воды, оказывается опасным канцерогеном.

С одной стороны, хлорирование воды избавило человечество от риска инфекционных заболеваний и эпидемий. С другой стороны, учеными в 70-80 годы было обнаружено, что хлорированная вода способствует накапливанию в воде канцерогенных веществ. Среди населения, потребляющего хлорированную питьевую воду, были выявлены случаи рака пищевода, прямой кишки, молочной железы, гортани, заболевания печени. Потому что при взаимодействии хлора с органическими веществами, находящимися в воде, образуются химические вещества. Эти вещества – трихлометаны - являются канцерогенными, что и было доказано учеными опытным путем. Ведь, как известно, хлороформ даже у крыс вызывает рак.

Этот эффект от вредного воздействия хлора может быть вызван двумя способами: когда хлор проникает в организм через дыхательные пути, и когда хлор проникает через кожу. Ученые во всем мире исследуют эту проблему. Они связывают многие опасные заболевания с попаданием в человеческий организм хлора или вредных побочных продуктов хлорирования воды. К этим заболеваниям относят : рак мочевого пузыря, рак желудка, рак печени, рак прямой и ободочной кишки. Но страдают не только органы пищеварения.

В чем проблема?

Наиболее важной проблемой данного метода является высокая активность хлора, он вступает в химические реакции со всеми органическими и неорганическими веществами находящимися в воде. В воде из поверхностных источников (которые в основном являются источниками водозабора) находится огромное количество сложных органических веществ природного происхождения, а также в большинстве крупных промышленных городов в воду попадают с промышленными стоками красители, ПАВ, нефтепродукты, фенолы и пр.

При хлорировании воды, содержащей вышеприведенные вещества, образуются хлорсодержащие токсины, мутагенные и канцерогенные вещества и яды, в том числе диоксиды, а именно:

Хлороформ, обладающий канцерогенной активностью

Дихлорбромметан, хлоридбромметан, трибромметан - обладающие мутагенными свойствами

2,4,6-трихлорфенол, 2-хлорфенол, дихлорацетонитрил, хлоргиередин, полихлорированные бифенилы - являющиеся иммунотоксичными и канцерогенными веществами

Тригалогенметаны - канцерогенные соединения хлора

Данные вещества оказывают замедленное убийственное воздействие на организм человека. Очистка питьевой воды от хлора не решает проблемы, так как многие из опасных соединений образующиеся в воде в процессе ее хлорирования попадают в организм человека через кожу, во время мытья, приема ванн или посещения бассейна. По некоторым данным, часовое принятие ванны содержащей в избыточном количестве хлорированную воду соответствует десяти литрам выпитой хлорированной воды.

Первые попытки связать онкологическую заболеваемость населения с качеством питьевой воды были предприняты еще в 1947 году. Но вплоть до 1974 года хлорирование воды никак не связывали с онкологией. Считалось, что хлорированная вода не оказывает на здоровье человека неблагоприятного действия.

К сожалению данные по связи потребления хлорированной питьевой воды поверхностных водоисточников с частотой злокачественных новообразований у населения стали накапливаться только с 70-х годов. Поэтому до сих пор на этот счет существуют разные точки зрения. По мнению некоторых исследователей, с употреблением загрязненной воды может быть связано от 30 до 50% случаев злокачественных опухолей. Другие приводят расчеты, в соответствии с которыми потребление речной воды (по сравнению с водой подземных источников) может привести к увеличению онкологической заболеваемости на 15%.

Чем опасен хлор, попадающий в организм человека

Побочный эффект от вредного воздействия хлора может быть вызван двумя способами: когда хлор проникает в организм через дыхательные пути, и когда хлор проникает через кожу. Ученые во всем мире исследуют эту проблему. Они связывают многие опасные заболевания с попаданием в человеческий организм хлора или вредных побочных продуктов хлорирования воды. К этим заболеваниям относят: рак мочевого пузыря, рак желудка, рак печени, рак прямой и ободочной кишки.

Но страдают не только органы пищеварения . Также хлор может стать причиной болезни сердца, атеросклероза, анемии, повышенного давления. Помимо этого хлор сушит кожу (вспомните ощущение стянутости кожи после бассейна), разрушает структуру волос (они начинают больше выпадать, становятся ломкими, тусклыми, безжизненными), раздражает слизистую оболочку глаз.

Эпидемиологи США провели исследование: они сравнили карту хлорирования воды с картой распределения заболеваний раком мочевого пузыря и органов пищеварения. Выявили прямую зависимость: чем больше содержание хлора в воде, тем чаще встречается заболевание.

--
Британские ученые из университета Бирмингема заявили о том, что потребление хлорированной воды во время беременности может привести к рождению детей с тяжелейшими врожденными дефектами – в частности, с пороками сердца и мозга.

Специалисты под руководством Юни Яаккола изучили данные о 400 тысячах младенцах, чтобы выяснить, как связаны одиннадцать наиболее распространенных врожденных дефектов с высоким, средним или низким содержанием химических веществ, появляющихся при хлорировании в питьевой воде.

Как известно, хлорирование – достаточно распространенный метод обеззараживания, который приводит к значительному сокращению передающихся с питьевой водой инфекций. Но одним из недостатков этого метода является образование побочных продуктов, большую часть которых составляют так называемые тригалометаны, в частности, хлороформ, дихлорбромметан, дибромхлорметан и бромоформ.

В результате исследования оказалось, что высокий уровень побочных продуктов хлорирования от 50 до 100% увеличивал риск появления трех врожденных пороков – дефекта межжелудочковой перегородки сердца (отверстие в перегородке между желудочками сердца, что приводит к смешиванию артериальной и венозной крови и хронической нехватке кислорода), так называемой волчьей пасти (расщелина в небе), а также к анэнцефалии (полное или частичное отсутствие костей свода черепа и мозга).

"Биологические механизмы, которые приводят к появлению врожденных пороков при высоком уровне побочных продуктов хлорирования, пока остаются неизвестными. Но наше исследование не только дает дополнительные свидетельства, что хлорирование может приводить к врожденным дефектам, но также показывает, что присутствие его побочных продуктов может быть связано с некоторыми конкретными пороками", – говорит Яаккола.

--
Вред хлора для здоровья человека нельзя недооценивать, отмечают врачи. Несмотря на то, что водоочистные станции используют относительно невысокие концентрации, даже они вредны для здоровья животных и человека. Вдыхание высоких концентраций хлора может быть фатальным для людей и вызывать различные болезни – от головных болей до нейротоксических реакций, возможно даже развитие раковых опухолей.

Более того, как отмечают специалисты, водные токсины попадают в организм не только через органы дыхания. Хлор лишает кожу ее естественной жировой оболочки, сушит, вызывает зуд и преждевременное старение. Даже волосы под действием хлорированной воды становятся сухими и ломкими.

Хлорирование воды – самый популярный способ ее дезинфекции, но не самый безопасный. Основные риски потребления воды из-под крана связаны с побочными продуктами, образуемыми хлором при соединении с другими веществами. Существуют данные, что это может способствовать возникновению раковых заболеваний. Более того, некачественная вода является причиной возникновения 90% заболеваний, а потребление воды хорошего качества способно продлить жизнь на 5-8 лет.

По материалам: www.bibliotekar.ru, www.ekomarket.ru, RBK.ru, РИА Новости

При растворении хлора в воде образуются соляная и хлорноватистая кислоты:

Cl 2 + H 2 O ↔ H + + Cl - + HClO.

Активным называют хлор , который выделяется в свободном виде при взаимодействии вещества с соляной кислотой. Массовая доля активного хлора в веществе (в процентах) равна массе молекулярного хлора, который выделяется из 100 г вещества при взаимодействии с избытком HCI. Понятие «активный хлор» включает, кроме растворенного молекулярного хлора, и другие соединения хлора, как, например, хлорамины (монохлорамин - NH 2 Cl и дихлорамин – NHCl 2 , а также в виде треххлористого азота NCl 3), органические хлорамины, гипохлориты (гипохлорит-анион ClO -) и хлориты, т.е. вещества, определяемые иодометрическим методом.

Cl 2 + 2I - = I 2 + 2Cl -

ClO - + 2H + + 2I - = I 2 + 2Cl - + H 2 O

HClO + H + + 2I - = I 2 + Cl - + H 2 O

NH 2 Cl+ 2H + + 2I - = I 2 + NH 4 + +Cl - .

Активный хлор содержат многие вещества. Самое старое известно под названием жавелевая вода (Жавель - пригород Парижа), которую приготовил еще в 1785 г. К. Бертолле из хлора и калиевого щелока и предложил заменить ею хлорную воду для отбеливания тканей. С 1820 г. начали пользоваться натриевым аналогом жавелевой воды - «лабараковой жидкостью». Эти растворы обычно содержат от 8 до 15 % активного хлора. Широкое применение нашла хлорная известь - дешевый технический продукт, имеющий переменный состав, который зависит от условий получения. Ею отбеливают ткани и целлюлозу, обеззараживают сточные воды, обезвреживают отравляющие вещества. Растворы гипохлоритов применяют для смыва полимерных покрытий с металлических сеток при производстве конденсаторов или для обработки полимерных подошв, чтобы они лучше приклеивались к верху обуви.

Иодометрический метод определения основан на том, что хлорсодержащие сильные окислители выделяют иод из раствора иодида. Выделившийся иод титруют раствором тиосульфата натрия, используя в качестве индикатора крахмал. Результаты определения выражают в мг Cl на 1 л воды. Чувствительность метода – 0,3 мгCl/л при объеме пробы 250 мл, однако, при использовании растворов тиосульфата с различной концентрацией объем пробы может составлять, в зависимости от требуемой чувствительности определения, от 500 до 50 мл воды и менее.

Содержание активного хлора определяют в дезинфицированной им питьевой воде, в сточных водах, загрязненных хлором или соединениями, выделяющими хлор. В природной воде содержание активного хлора не допускается; в питьевой воде его содержание установлено в пересчете на хлор на уровне 0,3-0,5 мг/л в свободном виде и на уровне 0,8-1,2 мг/л в связанном виде. Активный хлор в указанных концентрациях присутствует в питьевой воде непродолжительное время (не более нескольких десятков минут) и нацело удаляется даже при кратковременном кипячении воды. При определении активного хлора пробы нельзя консервировать, определение следует проводить немедленно после отбора пробы. Лимитирующий показатель вредности для активного хлора – общесанитарный.

Цель работы: измерение содержания активного хлора в воде и в образцах дезинфицирующих средств.

Объекты исследования: пробы водопроводной воды и образцы дезинфицирующих средств, в состав которых входят хлорсодержащие вещества.

Реактивы и оборудование:

  • буферный ацетатный раствор (рН = 4,5),
  • йодид калия,
  • универсальная индикаторная бумага,
  • 0,5%-ный раствор крахмала,
  • 0,005 н раствор тиосульфата натрия,
  • бюретки, конические колбы объемом 250 мл, мерный цилиндр на 100 мл, стеклянные палочки, пипетки на 5 мл,
  • весы.

Ход работы:

1) Проведите предварительное исследование образцов на содержание активного хлора, например, с помощью тест-системы. При необходимости проведите разбавление образцов.

Объем пробы, необходимый для анализа при концентрации активного хлора от 0,5 до 5,0 мг/л составляет 50 мл, при концентрации 0,3 до 0,5 мг/л – 250 мл.

2) В коническую колбу насыпьте 0,5 г КI и растворите в 1-2 мл дистиллированной воды.

3) Добавьте 1 мл буферного раствора и затем 50-250 мл анализируемой воды (в зависимости от предварительных результатов анализа).

3) Колбу закройте пробкой и поместите в темное место. Через 10 мин выделившийся йод титруйте 0,005 н раствором тиосульфата натрия до появления светло-желтой окраски, после чего добавьте 1 мл 0,5%-ного раствора крахмала и продолжите титровать до исчезновения синей окраски.

4) Проведите расчеты и сделайте выводы.

Х = (а. К. 0,177 . 1000)/V,

где: X – суммарный остаточный хлор, мг/л;

а – объем 0,005 н раствора тиосульфата натрия, израсходованного на титрование, мл;

К – поправочный коэффициент;

V – объем анализируемой пробы;

Дополнительная информация. Хлоремкость. Прежде чем решить вопрос об очистке сточной воды хлорированием, ее специально исследуют. При этом необходимо определить, с какой скоростью проходят реакции между содержащимися в воде веществами и хлором, доходят ли они до конца, какой требуется избыток добавляемого хлора для того, чтобы реакция прошла в желаемой степени в заданный промежуток времени t .

ОА – показывает содержание веществ, быстро окисляющихся хлором.

АК – процесс окисления и хлорирования веществ, медленно реагирующих с хлором, которые за время опыта не успевают прореагировать и остаются в растворе вместе с остаточным хлором.

КВ – отсутствие веществ, реагирующих с хлором.

Вопросы и задания для самостоятельной работы:

1. Зачем хлорируют воду? В чем преимущества и недостатки использования хлорированной питьевой воды?

2. Можете ли Вы предложить другие подходы к решению этой проблемы? Укажите преимущества и недостатки каждого из предложенных методов.

3. Сколько активного хлора содержит одна тонна вещества с массовой долей его 52%?

4. Почему хлороформ хранят в темных и заполненных доверху склянках?

5. Формально активный хлор могут содержать соединения, в которых вообще нет хлора - ведь это понятие определяет не истинное содержание хлора в соединении, а его окислительную способность по отношению к KI в кислой среде. Предложите несколько соединений, в растворах которых можно определить «активный хлор».

Приготовление растворов

1. Для приготовления 0.01 н раствора тиосульфата натрия 2,5 г его растворяют в свежепрокипяченной и охлаждённой дистиллированной воде, добавляют 0,2 г Na 2 СО 3 и доводят объем до 1 л.

2. Для приготовления 0,005 н раствора тиосульфата натрия в мерную колбу объемом 1 л прибавляют 500 мл 0,01 н раствора тиосульфата натрия, 0,2 г Nа 2 СО 3 и доводят объём до метки. Раствор используют при содержании активного хлора менее 1 мг/л.

3. Для приготовления 0,5%-ного раствора крахмала смешивают 0,5 г растворимого крахмала с небольшим количеством дистиллированной воды, а затем приливают к 100 мл кипящей дисти­ллированной воды и кипятят несколько минут. После охлаждения раствор консер­вируют, добавляя хлороформ или 0,1 г салициловой кислоты.

4. Для приготовления ацетатного буфера (рН = 4,5) в мерную колбу объемом 1 л приливают 102 мл 1 М уксусной кислоты (60г ледяной уксусной кислоты в 1 л дистиллированной воды), 98 мл 1 М раствора ацетата натрия (136,1 г СН 3 СООNа. 3Н 2 О в 1 л дистиллированной воды) и доводят объём раствора дистиллированной водой до метки.

Кафедра Экология и безопасность жизнедеятельности

Лабораторная работа № 18

ОПРЕДЕЛЕНИЕ ОСТАТОЧНОГО ХЛОРА В ВОДЕ ТИТРОМЕТРИЧЕСКИМ МЕТОДОМ

Пенза 2010 г.

Цель работы – овладение спектрофотометрическим и титрометрическим методами определения остаточного активного хлора в водопроводной воде.

Термины и определения

Общий хлор - суммарная концентрация всех форм хлорноватистой кислоты, неорганических и органических хлораминов. Зависит от первоначальной дозы хлорирующего агента в процессе дезинфекции.

Связанный хлор - часть общего хлора, присутствующего в воде в виде органических и неорганических хлораминов.

Активный хлор - равновесная концентрация хлорноватистой кислоты, зависящая от рН и pК HClO при данной температуре.

Свободный хлор (остаточный хлор) + + - хлор, присутствующий в воде в виде хлорноватистой кислоты, ионов гипохлорита или растворенного молекулярного хлора.

Спектрофотометрия -метод анализа, основанные на измерении поглощения излучения молекулярной средой в видимой и ультрафиолетовой областях.

Оптическая плотность вещества - мера непрозрачности слоя вещества для световых лучей.

Титрование – процесс постепенного прибавления титрованного раствора, находящегося в бюретке, к определенному, точно отмеренному объему исследуемого раствора для определения концентрации вещества в последнем.

Титрованные растворы – растворы точно известной концентрации.

Теоретическая часть Характеристика и свойства хлора

При нормальных условиях хлор представляет собой газ желто-зеленого цвета с резким раздражающим специфическим запахом. При обычном давлении сжижается при -34" С. Тяжелее воздуха примерно в 2,5 раза.

Хлор реагирует со многими химическими соединениями с образованием хлоридов.

Взаимодействие его с углеводородами сводится к замещению одним атомом хлора атома водорода в молекуле. При взаимодействии с ненасыщенными неорганическими и органическими соединениями (СО, С 2 Н 4 и др.) хлор непосредственно присоединяется по месту двойной связи.

При растворении хлора в воде идет гидролиз с образованием хлорноватистой и хлористоводородной кислот.

Cl 2 + H 2 O→ HClO + HCl

Хлорноватистая кислота HClO постепенно распадается на хлористоводородную кислоту и свободный кислород.

HClO →HCl + O

На этом свойстве основано дезинфицирующее действие хлора в присутствий воды.

Хлоропоглощаемость воды представляет собой разность между дозой введенного в воду активного хлора и его концентрацией в воде через некоторый промежуток времени (обычно через 30 минут). Хлоропоглощаемость воды характеризует ее загрязненность органическими и некоторыми неорганическими (Fe 2+ , H 2 S, SO 3 2- , Na 2 S 2 O 3 и др.) веществами. Она зависит от концентрации этих загрязнений в воде, дозы хлора, времени взаимодействия, температуры, рН среды и других факторов. Вода, не содержащая веществ, взаимодействующих с хлором, хлоропоглощаемостью не обладает. В природных водоемах хлор присутствовать не должен.

Хлорирование воды - наиболее распространённый способ обеззараживания питьевой воды с применением газообразного хлора или хлорсодержащих соединений, вступающих в реакцию с водой или растворенными в ней солями. В результате взаимодействия хлора с протеинами и аминосоединениями, содержащимися в оболочке бактерий и их внутриклеточном веществе, происходят окислительные процессы, химические изменения внутриклеточного вещества, распад структуры клеток и гибель бактерий и микроорганизмов.

Наиболее важной проблемой хлорирования питьевой воды является высокая активность хлора, он вступает в химические реакции со всеми органическими и неорганическими веществами, находящимися в воде. В воде поверхностных источников находится огромное количество сложных органических веществ природного и антропогенного происхождения, которые образуют хлорсодержащие токсины, мутагенные и канцерогенные вещества и яды, в том числе диоксиды.

Данные вещества оказывают замедленное негативное воздействие на организм человека.

Побочный эффект от вредного воздействия хлора может быть вызван двумя способами: когда хлор проникает в организм через дыхательные пути, и когда хлор проникает через кожу

Также хлор может стать причиной болезни сердца, атеросклероза, анемии, повышенного давления. Помимо этого хлор сушит кожу, разрушает структуру волос, раздражает слизистую оболочку глаз.

С целью уничтожения микробов хлор вводят с избытком из того расчёта, чтобы через определенное время после хлорирования воды содержание остаточного хлора должно быть в пределах, указанных в таблице 1.

Таблица 1. Содержание остаточного хлора в воде после резервуаров чистой воды

по ГОСТ 2874-82

Если качество воды источника подвержено резким и быстрым изменениям, то хлорирование воды обычным методом может не обеспечить ее надежного обеззараживания. Периодическое ухудшение качества исходной воды может оказаться неучтенным лабораторией, вследствие чего снизится качество подаваемой в сеть воды. В таких случаях применяют хлорирование воды дозами хлора, значительно превышающими обычно требуемые для ее дезинфекции, т. е. так называемое перехлорирование. Дозу хлора в этом случае принимают равной 5-10 мг/л и более. Перехлорирование применяют так же, как меру борьбы с цветностью воды, с запахами и привкусами в природной воде. Также при эпидемиологических катастрофах проводится суперхлорирование с последующим дехлорированием воды. При перехлорировании хлор вводят в воду перед очистными сооружениями; при этом количество хлора, остающегося в воде после прохождения ею всех очистных сооружений, бывает еще настолько велико, что вызывает ухудшение ее вкуса. Поэтому при перехлорировании требуется последующее удаление избыточных количеств хлора из воды до подачи ее в сеть. Последний процесс называется дехлорированием и осуществляется введением в хлорированную воду веществ, способных связывать избыточный хлор. В качестве таких веществ можно применять гипосульфит-натрия (серноватисто-кислый натрий Na 2 S 2 O 3), сернистый газ SO 2 , сульфит натрия Na 2 SO 3 и др.

Остаточный хлор – хлор, оставшийся в воде после введенной дозы и после окисления находящихся в воде веществ. Он может быть свободным и связанным , т.е. представлен различными формами хлора. Именно остаточный хлор является – показателем достаточности принятой дозы хлора. Согласно требованиям СанПиН 2.1.4.1074-01 концентрация остаточного хлора в воде перед поступлением ее в сеть должна находиться в пределах 0,3 – 0,5 мг/л.

28. Определить хлорпотребность воды методом хлорирования воды в трёх стаканах.

Хлорпотребностъ воды - это количество активного хлора (в миллиграммах), необходимое для эффективного обеззараживания 1 л воды и обеспечивающее содержание остаточного свободного хлора в пределах 0,3-0,5 мг/л после 30-минутного контакта с водой, или количество остаточного связанного хлора в пределах 0,8-1,2 мг после 60-минутного контакта. Для определения необходимой дозы хлора при хлорировании нормальными дозами проводится пробное хлорирование воды. В полевых условиях пробное хлорирование проводят в трех стаканах, в каждый из которых наливают по 200 мл исследуемой воды, вкладывают стеклянные палочки и с помощью выверенной пипетки (25 капель равны 1 мл) добавляют 1% раствор хлорной извести: в первый – 1 каплю, во второй – 2 капли, в третий – 3 капли. Воду в стаканах хорошо перемешивают и через 30 мин определяют наличие в ней остаточного хлора. Для этого в каждый стакан прибавляют 2 мл 5% раствора йодида калия, 2 мл хлористоводородной кислоты (1:5), 1 мл 1% раствора крахмала и тщательно перемешивают. При наличии остаточного хлора вода окрашивается в синий цвет, тем более интенсивный, чем больше в ней содержится остаточного хлора. Интенсивность окраски соответствует следующим концентрациям остаточного хлора в воде: слегка синяя (0,1 мг/л), светло-синяя (0,2 мг/л), синяя (0,3 мг/л), густо-синяя (0,5 мг/л); сине-черная (не видно дна пробирки) - 1,0 мг/ л и более.

Воду в стаканах, где появилось синее окрашивание, титруют по каплям 0,7% раствором тиосульфата натрия до обесцвечивания, перемешивая ее после добавления каждой капли.

Для расчета дозы выбирают тот стакан, где произошло обесцвечивание от 2 капель тиосульфата натрия, так как содержание остаточного хлора в этом стакане составляет 0,4 мг/л (1 капля 0,7% раствора тиосульфата натрия связывает 0,04 мг хлора, что соответствует при пересчете на 1л 0,04х5=0,2 мг/л). Если обесцвечивание произошло от 1 капли, содержание остаточного хлора недостаточно – 0,2 мг/л; при обесцвечивании от 3 капель содержание остаточного хлора избыточно – 0, 6 мг/л.

В зависимости от результатов пробного хлорирования рассчитывают количество хлорной извести, необходимое для хлорирования 1л воды.



29. Продемонстрировать методику отбора проб воздуха с целью изучения бактериальной загрязнённости воздуха.

Существуют два основных способа отбора проб воздуха для исследования: 1) седиментационный - основан на механическом оседании микроорганизмов; 2) аспирационный - основан на активном просасывании воздуха (этот метод дает возможность определить не только качественное, но и количественное содержание бактерий).

Седиментационный метод

Чашки Петри с питательной средой (МПА) устанавливают в открытом виде горизонтально, на разном уровне от пола. Метод основан на механическом оседании бактерий на поверхность агара в чашках Петри. Чашки со средой экспонируют от 10 до 20 мин, в зависимости от предполагаемого загрязнения воздуха. Для выявления патогенной флоры используют элективные среды. Экспозиция в этих случаях удлиняется до 2-3 ч. После экспозиции чашки закрывают, доставляют в лабораторию и ставят в термостат на 24 ч при температуре 37° С. На следующий день изучают выросшие колонии. Метод этот используют в основном в закрытых помещениях.

(Аспирационный метод)

Бактериоуловитель Речменского. Перед работой прибор заполняют стерильной содой. Действие прибора основано на протягивании через него воздуха с помощью аспиратора. При этом происходит распыление находящейся в приборе жидкости. После окончания просасывания жидкость, через которую был пропущен воздух, засевают по 0,1-0,2 мл на МПА в чашках Петри. При необходимости использовать элективные среды посевную дозу увеличивают (0,3-0,5 мл). Полученная в приемнике жидкость может быть использована для заражения животных (например, при исследованиях, проводимых для выявления вирусов, риккетсий и т. д.).



Прибор Дьяконова также основан на улавливании бактерий в жидкости, через которую пропущен воздух.

Прибор ПАБ-1 предназначен для бактериологического исследования больших объемов воздуха в течение короткого промежутка времени. Получение проб воздуха производят со скоростью 125-150 л/мин. Принцип работы прибора основан на улавливании микроорганизмов на электрод противоположного заряда. Большая скорость отбора проб воздуха в этом приборе и возможность посева его на различные питательные среды имеет значение для обнаружения патогенных и условно-патогенных бактерий (например, синегнойной палочки в хирургических отделениях и др.).

Аппарат Кротова. Действие основано на принципе удара струи воздуха на среду в чашках Петри. Аппарат состоит из трех частей: узла для отбора проб воздуха, ротаметра, электрической части питающего механизма.

Исследуемый воздух при помощи центробежного вентилятора, вращающегося со скоростью 4000-5000 об/мин, засасывается в щель прибора и ударяется о поверхность открытой чашки Петри со средой. Содержащиеся в воздухе микроорганизмы оседают на питательный агар. Для равномерного распределения микроорганизмов по всей поверхности столик с находящейся на нем чашкой вращается. Из прибора воздух выводится через воздухопроводную трубку, которая соединена с ротаметром, показывающим скорость протягивания воздуха через прибор.

Недостатком прибора Кротова является то, что он нуждается в электроэнергии, поэтому не во всех условиях может быть использован.

Первый день исследования

Отобранные пробы помещают в термостат при 37° С на 18-24 ч.

Второй день исследования

Чашку вынимают из термостата и производят подсчет колоний. Бактериальное загрязнение воздуха выражается общим числом микробов в 1 м3 его.

Расчет. Например, за 10 мин пропущено 125 л воздуха, на поверхности выросло 100 колоний.

Для определения золотистого стафилококка забор производят на желточно-солевой агар. Чашки с посевами инкубируют в термостате при 37° С в течение 24 ч и 24 ч выдерживают при комнатной температуре для выявления пигмента. Колонии, подозрительные на S. aureus, подлежат дальнейшей идентификации (см. главу 14).

В детских учреждениях воздух проверяют на наличие сальмонелл. Для этого воздух засевают в чашку со средой висмут-сульфитный агар.

Выявление патогенных бактерий и вирусов в воздухе закрытых помещений проводят по эпидемиологическим показаниям. Для выявления возбудителей туберкулеза пользуются прибором ПОВ, в качестве улавливающей используется среда Школьниковой.

30. Оценить условия труда и определить класс условий труда по степени вредности и опасности труда врача-стоматолога, если содержание в воздухе рабочей зоны металлов превышает ПДК в 2,5 раза; концентрация аэрозолей фиброгенного действия выше ПДК в … раз и т.д.

Первая степень 3-го класса (малый, умеренный риск) - значительное превышение параметров предельно допустимых концентраций (ПДК) (в 1,1-3 раза). Создает условия
для развития заболеваний, могут возникать обратимые функциональные изменения.
3.2. Вторая степень 3-го класса (средний, существенный риск) - превышение параметров ПДК в 3,1-5 раз. Пред- располагает к развитию стойких функциональных нарушений, увеличению временной нетрудоспособности, повышению общей заболеваемости, появлению начальных явлений профессиональной патологии.
3.3. Третья степень 3-го класса (высокий риск) - превышение параметров ПДК в 5,1 -10 раз. Приводит к развитию профессиональной патологии в легкой форме, росту хронической общесоматической патологии (неспецифическое влияние вредных факторов на формирование болезненности у предрасположенных лиц, при наличии скрытых анатомо-физиологических дефектов) и временной нетрудоспособности.
3.4. Четвертая степень 3-го класса (очень высокий риск) - превышение параметров ПДК более чем в 10 раз. Приводит к выраженной форме профессиональных заболеваний, значительному росту хронической непрофессиональной патологии.
4-й класс: опасные (экстремальные) условия труда (опасный, сверхвысокий риск) - чаще встречаются в аварийных ситуациях, способствуют развитию острых профессиональных заболеваний.

31. Определить класс условий труда по показателям тяжести и напряжённости трудового процесса врача-стоматолога, если стереотипные рабочие движения совершаются до … раз за смену и т.д.

при локальной нагрузке. 1 класс – до 20 000, 2 класс – до 40 000, класс 3.1 – до 60 000, класс 3.2 – больше 60 000

при региональной нагрузке. 1 класс – до 10 000, 2 класс – до 20 000, 3.1 класс – до 30 000, 3.2 класс – больше 30 000

Термины и определения

Свободный хлор- хлор, присутствующий в воде в виде хлорноватистой кислоты ион гипохлоритов или растворенного элементарного хлора.

Связанный хлор- часть общего хлора присутствующая в воде в виде хлораминов и органических хлораминов.

Общий хлор-- хлор, присутствующий в воде в виде свободного хлораили связанного или обоих вместе.

Хлорамины- производные аммиака, образованные путём замещения одного, двух или трех атомов водорода атомами хлора (монохлорамин NH 2 Cl, дихлорамин NHCl 2 , трихлорид азота NCl 3) и все хлорированные производные соединения органического азота определённые по ИСО 7393-1

Таблица 2

Термины и их синонимы, относящиеся к соединениям хлора в воде

Методы определения хлора в воде

Титриметрический метод

ИСО 7393-1 устанавливает титриметрический метод с использованием N 2 N-диэтил-1,4-фенилендиаминсульфата (ЦПВ-1) для определения свободного и общего хлора в воде (от 0,0004 до 0,07 ммоль/л или от 0,03 до 5 мг/л).

Морская вода и вода, содержащая бромиды и йодиды, составляют группу веществ, для анализа которых необходимы особенные методики.

Данный метод применяют для обычных концентраций общего хлора в питьевой воде в пересчете на хлор (Cl 2),а при более высоких концентрациях контроль проводят путем разбавления проб.

Для концентраций свыше 0,07 ммоль/л можно применять метод, описанный в ИСО 7393-3

Сущность метода заключается во взаимодействии свободного хлора с ЦПВ-1 с образованием при рН 6,2-6,5 соединения красного цвета. Затем проводят титрирование соединения стандартным раствором соли Мора до исчезновения красного цвета.

Реактивы

Вода, не содержащая окисляющих и восстанавливающих веществ. Чтобы получить воду нужного качества, деминерализованную или дистиллированную, воду сначала хлорируют до концентрации хлора 0,14 ммоль/л (10 мг/л) и хранят в плотно закрываемой стеклянной бутыли для кислот. Затем воду дехлорируют ультрафиолетовым излучением или солнечным светом в течение нескольких часов или активированным углём. Окончательно проверяют качество, применяя методику описанную ниже:

в две конические колбы вместимостью 250 мл помещают последовательно: а) в первую - 100 мл воды, качество которой нужно определить, и около 1 г иодида калия; перемешивают и через 1 мин добавляют 5 мл буферного раствора или 5 мл реактива ЦВП-1.

б) во вторую - 100 мл воды, качество которой необходимо проверить, добавив одну или две капли раствора гипохлорита натрия, затем через 2 мин 5 мл буферного раствора или 5 мл реактива ЦВП-1.

В первой колбе не должно происходить окрашивание, в то время как во второй появляется бледно-розовая окраска.

Буферный раствор рН 6,5 . Последовательно растворяют в воде 24 г безводного двухзамещенного фосфорита натрия (Na 2 НPO 4) или 60,5 г двенадцативодного двухзамещенного фосфорита натрия (Na 2 PO 4 *12H 2 O) или 46 г однозамещенного фосфата калия (KH 2 PO 4). Добавляют 100 мл раствора трилона Б концентрацией 8 г/л (или 0,8 г твердого вещества).

Если нужно добавляют 0,020 г хлорида ртути (II)(HgCl 2), чтобы предотвратить рост плесени и мешающее влияние следов иодида в реактивах при проведении испытаний на имеющийся свободный хлор.

Полученный раствор разбавляют до 1 л перемешивают.

Раствор ЦВП-1, 1,1 г/л. Смешивают 250 мл воды, 2,1 мл серной кислоты (g =1,84) и 25 г раствора трилона Б концентрацией 8 г/л (или 0,2 твердого вещества). В этой смеси растворяют 1,1 г безводного ЦВП-1 или 1,5 г пентагидрата ЦВП-1, разбавляют водой до 1 л и перемешивают.

Реактив хранят в темной бутылке, защищенной от нагревания. Раствор обновляют через месяц хранения или после его обесцвечивания.

Кристаллы иодид калия

Соль Мора, основной раствор - 0,056 моль/л. Растворяют 22 г гексагидрата аммоний-сернокислого железа (II) (соли Мора) приблизительно в 250 мл воды, содержащей примерно 5 мл серной кислоты (g =1,84) в мерной колбе вместимостью 1 л. Разбавляют водой до метки и перемешивают. Хранят в затемненной склянке.

Стандартный раствор перед использованием или ежедневно при большом количестве определений готовят следующим образом:

в мерную коническую колбу 250 мл помещают 50 мл основного раствора соли Мора, приблизительно 50 мл воды, 5 мл ортофосфорной кислоты (g =1,71), и 4 капли индикатора дефениламинсульфоната бария. Титруют раствором бихромата калия. Конечная точка титрования наступает, когда одна капля вызывает интенсивное темно-красное окрашивание, которе не изменяется после последующего добавления раствора бихромата калия.

Концентрацию (C 1 ) Cl 2 , выраженную в ммоль/л, вычисляют по формуле:

C 1 =V 2 *(C 2 /V 1 ),

где C 2 - концентрация стандартного раствора бихромата калия, в данном случае 100 ммоль/л;

V 1 - объем основного раствора соли Мора, мл; в данном случае 50 мл;

V 2 - объем стандартного раствора бихромата калия, использованный при титровании, мл.

Примечание. Когда V 2 становится меньше чем 22 мл, готовят свежий раствор.

Стандартный раствор соли Мора, с - 2,8 ммоль/л.

Помещают 50 мл свежестандартизированного основного раствора в мерную колбу вместимостью 1 л. Разбавляют до метки и перемешивают. Помечают темную бутылку.

Такой раствор готовят по мере необходимости или ежедневно, если делают большое количество определений.

Концентрацию (C 1 ) Cl 2 , выраженную в ммоль/л, вычисляют по уравнению:

C 1 =C 1 /20

Раствор арсената натрия (NaAsO 2) c=2г/л, или раствором тиоацетамида (CH 3 CSNH 2).

Раствор хлорноватистого натрия , с(Cl 2), около 0,1 г/л. Готовят путем разбавления концентрированного раствора хлорноватистого натрия.

Раствор индикатора дефениламинсульфоната бария , 3 г/л. Разбавляют дефениламин-сульфонат бария [(C 2 H 5 -NH-C 2 H 4 SO 3)Ba] в 100 мл воды.

Стандартный раствор бихромата калия , с(1/6K 2 Cr 2 O 7)=100 ммоль/л. Взвешивают в точности до миллиграмма 4,904 г безводного бихромата калия. Растворяют в мерной колбе вместимостью 1 л.

Приборы и оборудование

Используется обычное лабораторное оборудование и микробюретку вместимостью до 5 мл с делением 0,02 мл.

Необходимую посуду готовят путем заполнения ее хлорноватистого натрия, затем через 1 час тщательно ополаскиваю водой. Во время исследований одну партия посуды следует иметь для определения свободного хлора, а другую для определения общего хлора, чтобы избежать загрязнения.

Методика определения

Определение начинают сразу же после отбора проб. Во всех случаях следует избегать яркого света, взбалтывания, подогрева.

Берут две исследуемые порции, каждую по 100 мл. Если концентрация превышает 0,07 ммоль/л (5 мг/л), необходимо брать меньший объем исследуемой пробы или разбавлять водой до 100 мл.

Определение свободного хлора

Быстро помещают в коническую колбу вместимостью 250 мл, последовательно 5 мл буферного раствора, 5 мл реактивного раствора ЦВП-1 и первую исследуемую порцию. Перемешивают и сразу же титруют до обесцвечивания раствором соли Мора. Записывают объем V 3

Определение общего хлора

Быстро помещают в коническую колбу вместимостью 250 мл, последовательно 5 мл буферного раствора, 5 мл реактивного раствора ЦВП-1, вторую порцию и около 1 г иодида калия.

Перемешивают и через 2 мин титруют до обесцвечивания раствором соли Мора. Если в течении 2 мин наблюдается изменения окраски, то продолжают титровать до обесцвечивания. Записывают объем V 4 мл, использованный при титрировании.

Если качество воды не известно, возможна сильно кислая или сльно щелочная, или же вода с высоким содержанием солей, то следует убедиться, что объем добавленного буферного раствора достаточно для доведения рН воды до 6,2-6,5. Если же этого нет, используют большой объем буферного раствора.

Если в пробе присутствует марганец, то определяют влияние окисленного марганца, выполняя дополнительное определение. Используют порцию исследуемой пробы, предварительно обработанной раствором арсенита натрия или тиоацетамида, чтобы нейтрализовать все окисленные соединения, кроме окисленных соединений марганца. Для этого исследуемую порцию помещают в коническую колбу вместимостью 250 мл, добавляют 1 мл раствора арсенита натрия или раствором тиоацетамидаи перемешивают. Вновь добавляют 5 мл буферного раствора и 5 мл реактива ЦВП-1. Сразу же титруют до обесцвечивания раствором соли Мора. Записывают объем V 5 , мл, соответствующий окисленному марганцу.

Выражение результатов

Расчет концентрации свободного хлора

Концентрацию свободного хлора c(Cl 2 )

c(Cl 2 )=(c 3 (V 3 -V 2 ))/V 5

где c 3 -концентрация раствора соли Мора, ммоль/л;

V 2 -объем исследуемой пробы, мл;

V 3 - объем раствора соли Мора, используемый при титрировании, мл;

V 5 - объем соли Мора, используемый для устранения влияния марганца. При отсутствии марганца V 5 =0 мл.

Расчет концентрации общего хлора

Концентрацию общего хлора c(Cl 2 ) , выраженную в ммоль/л, вычисляю по уравнению:

c(Cl 2 )=(c 3 (V 4 -V 3 ))/V 5

где V 4 - объем раствора соли Мора, используемый при титровании, мл.

Переход от молярной концентрации к массовой. Концентрация хлора, выраженная в моль/л, может быть выражена в г/л умножением на коэффициент пересчета 70,91.

Мешающее влияние

Могут быть выделены два вида мешающих влияний.

  • 1)Мешающее влияние соединений хлора, содержащих диоксид хлора. Эти влияния могут корректироваться путем определения диоксида хлора в воде.
  • 2)Мешающее влияние других соединений, кроме соединений хлора. Окисление ЦВП-1 вызывается не только соединениями хлора. В зависимости от концентрации и потенциала химического окисления реактив подвергается воздействию и других окислителей. Особенно следует упомянуть следующие вещества: бром, йод, бромамиды, иодамиды, озон, перекись водорода, хромат, окисленный марганец, нитрат, железо (III) и медь. При наличии меди (II) (менее 8 мг/л) и ионов железа (III) (менее 20 мг/л) помехи устраняют добавлением трилона Б в буферный раствор и в раствор ЦВП-1.

Отчет об определении

Метод иодиметрического титрирования

ИСО 7393-3 устанавливает метод иодиметрического титрирования для определения общего хлора в воде.

Некоторые вещества оказывают мешающие в ходе определения, о чем будет сказано ниже.

В приложении стандарта представлен метод прямого титрирования. Его обычно применяют для определения концентраций хлора выше 7 мкмоль/л (0,5 мг/л) в обработанной питьевой воде.

Сущность метода заключается во взаимодействии проб воды с общим хлором и раствором иодида калия с выделением свободно йода, который сразу же восстанавливается известным избытком стандартного раствора тиосульфата, предварительно добавленного в раствор. Затем титруют избытком тиосульфата стандартным раствором иодида калия.

Реактивы

Вода , не содержащая хлора и других восстанавливающих веществ.

Кристаллы иодида калия (KI).

Раствор фосфорной кислоты (H 3 PO 4), приблизительно 0,87 моль/л. Растворяют 64 г фосфорной кислоты, охлаждают и разбавляют до 1 л.

Стандартный титрированный раствор иодида калия, с(1/6KIO 3)=10 ммоль/л. Взвешивают 0,36 г с точностью до 1 г сухого иодида калия.

Стандартный титрированный раствор тиосульфата натрия с(Na 2 S 2 O 3 *5H 2 O)=10ммоль/л. Растворяют 2,48г тиосульфата натрия приблизительно в 250мл воды в мерной колбе вместимостью 1л, разбавляют до метки водой и перемешивают.

Проверку титра раствора проводят ежедневно или непосредственно перед использованием следующим образом: помещают 200мл воды в коническую колбу вместимостью 500 мл. Добавляют приблизительно 1г иодида калия, затем вводят с помощью пипетки 10мл раствора тиосульфата натрия, 2мл фосфорной кислоты и 1 мл раствора крахмала. Сразу же титруют стандартным титрованным раствором иодида калия до появления синей окраски, сопровождающейся не менее 30с. Записывают объем иодида калия, использованный на титрирование. Титр С 1 раствора тиосульфата натрия, выраженный в ммоль/л вычисляют по уравнению

С 1 =(V 2 -С 2 )/V 1

Где С 2 - концентрация стандартного титрированного раствора иодида калия, ммоль/л

V 1 - объем раствора тиосульфата натрия, использованный при установлении титра, мл (V1=10мл)

V 2 - объем стандартного титрированного раствора иодида калия, использованного при титрировании, мл

Раствор крахмала, 5 г/л или подобный индикатор, выпускаемый в промышленности.

Приборы и оборудования

Используют обычное лабораторное оборудование и бюретку с тонким наконечником со скоростью подачи 30капель/мл, объемом до 25мл с ценой деления 0,05мл.

Нужную посуду готовят, заполняя её раствором гипохлорита натрия с=0,1г/л, затем через 1 час тщательно ополаскивают дистиллированной водой и водой, не содержащей хлора.

Методики определения

Определение начинает сразу же после отбора проб. При проведении анализа следует избегать воздействия на пробу яркого света, перемешивания, подогрева.

Отбирают исследуемую порцию (V6), объем котрого не превышает 200мл, содержащую не более чем 0,21 ммоль/л (15г/л) общего хлора. Если количество общего хлора превышает эту концентрацию, разбавляют исследуемую порцию водой и отбирают часть исследуемой порции, объем которой не превышает 200мл.

Помещают исследуемую порцию в коническую колбу вместимостью 500мл. Добавляют поочередно 1г иодида калия, 2мл фосфорной кислоты и с помощью пипетки 10мл (V4) стандартного раствора тиосульфата натрия и затем 1мл раствора крахмала. Реагенты должны вводиться в строго определенной последовательности, так как в противном случае может иметь место нестехиометрическое превращение гипохлорита при воздействии тиосульфата.

Сразу же титруют стандартным титрированным раствором иодида калия до установления постоянной синей окраски в течении 30с., записывают объем иодида калия использованный на титрирование (V3)

Выражение результатов

Концентрация общего хлора c(Cl 2 ), выраженную ммоль/л, вычисляют по формуле

c(Cl 2 )=(V 4 * С 1 - V 3 * С 1 )/(V 2 * V 4 )

где С1 - фактическая концентрация стандартного титрированного раствора тиосульфата натрия, ммоль/л

V2 - объем исследуемой порции перед разбавлением (если оно было), мл

V3 - объем стандартного раствора иодида калия, используемый на титрирование, мл

V4 - объем стандартного раствора тиосульфата натрия, использованный на титрирование, мл (V4=10).

Мешающие явления

Окисление иодида-иона до иона вызывается не только хлором. В зависимости от концентрации и химического потенциала окисления вызывают все окислители. Поэтому данный метод может применяться только при отсутствии других окисляющих веществ; особо следует отметить бром, йод, бромамины, йодамины, озон, перекись водорода, перманганат, иодат, бромат, хромат, диоксид хлора, хлорит, окисленный марганец, нитрит, ионы железа (III), ионы меди (II) и марганца (III).

Отчет об определении

Отчет об определении должен содержать следующую информацию:

  • а) ссылку на международный стандарт ИСО 7393-1
  • б) всю информацию, необходимую для полной идентификации пробы
  • в) результаты и использованный метод их выражения
  • г) детали какого-либо процесса, не включенные в данный стандарт или рассматриваемые как не обязательные совместно с какими-либо подробностями, которые могут повлиять на результат.

Похожие статьи