Проблема структуры элементарных частиц. Некоторые проблемы физики элементарных частиц и постулат гильберта

На первом этапе стремление каким-то образом ограничить количество элементарных составляющих материи привело к обсуждению теоретических схем, в которых фундаментальными частицами считалась лишь часть известных адронов, которые рассматривались как связанные состояния, состоящие из фундаментальных адронов. Однако позже оказалось, что эти схемы могут описать свойства всех известных частиц.

С увеличением количества открытых адронов трудности, с которыми столкнулись подобные схемы, усложнялись и становилось все более очевидным, что адроны не могут быть элементарными образованиями, элементарные частицы, если они существуют, должны быть объектами какой-то другой природы.

Адроны с целочисленным спином называют мезонными, поскольку первые обнаруженные мезоны (седьмой, К) имели массу, промежуточную между массой электрона и протона. Адроны с пивцилим спином вследствие значительной массы получили название барионной адронов. К ним относятся нуклоны, гипероны и некоторые другие частицы.

Знание характеристик адронов позволяет надежно провести их классификацию, то есть выделить группы с одинаковыми или близкими свойствами. Часть таких достаточно широких групп мы упоминали. Оказывается, что можно выделить и другие группы адронов, близких друг к другу по некоторым признакам. Современные исследования направлены на поиски фундаментальных частиц, из которых можно создать все сильновзаемодиючи частицы, т.е. адроны. Этих фундаментальных частиц предъявляют следующие требования: они должны быть барионами и антибарионамы - частицами с соответственно положительным и отрицательным барионным зарядами. их комбинация способствовать образованию барионного заряда любого адронов. Барионный заряд мезонов равен нулю, поэтому их получают комбинацией барионов с антибарионом. Фундаментальные частицы должны иметь минимальное пивциле значение обычного спина, чтобы из них можно было построить частицы с любыми целыми и пивцилимы спинами. Среди них обязательно должен быть Барион с странность, равной единице, для контроля странных частиц. Важно также, чтобы масса фундаментальных частиц не очень отличалась, что может свидетельствовать о одинаковые значения сильного взаимодействия, которое существует между ними. Еще одно требование связано с изотопическим спином фундаментальных частиц. Чтобы можно было достать любые изотопический мультиплет, в нашем распоряжении должно быть хотя бы изотопический синглет и изотопический дублет.

С. Саката, руководствуясь этими требованиями, за фундаментальные частицы взял три барионы ^ протон, нейтрон и?-гиперон (р, n, X) и их античастицы (р, л, X). Схема Саката удовлетворительно описывает мезонные адроны, но оказывается непригодной для барионной адронов. Для устранения недостатков схемы Саката был применен октетного формализм М. Гелл-Манна и Ю. Неймана. Авторы октетного формализма предложили расширить схему Саката, выбрав в качестве фундаментальных частиц восемь барионов вместо трех.

Новую схему оказалось возможным распространить на барионного адроны. На основе предложенной схемы Гелл-Манн предсказал существование неизвестного в то время и ~-гиперон. При этом с помощью октетного схемы определили не только все квантовые числа предусмотренного гиперонов, но и его массу. Предсказанное значение массы совпало с экспериментальным значением, когда ^ "-гиперон был открыт в Брукхейвене в двухметровой водородной пузырьковой камере, облученной К-мезонами.
В первой форме этой модели было предложено три типа кварков, обозначенных буквами u, d9 s, которые происходят от английских слов up (вверх), down (вниз), strange (странный). Носителем странности был кварк s, поэтому в состав всех странных частиц входил минимум один s-кварк, или s-антикварк. В кварковой модели распределение масс между адронами отражает распределение масс между кварками. Итак, поскольку s-кварк значительно массивнее от других кварков, масса странных адронов значительно больше массы Неудивительно адронов.

Позже систему кварков расширили, было дополнительно введено кварки: «очарованный» (с), «привлекательный» (Ь) и «правдивый» (t). Свойства, которые приписываются кваркам, приведены в табл. 18.3. Основанием увеличение количества кварков было то, что связанные состояния из трех кварков вроде иии (Д +), ddd (Д), sss (? ~) противоречат принципу Паули. Из табл. 18.3 видно, что все квантовые числа кварков в этих образованиях одинаковы. Поскольку кварки имеют пивцили спины и, следовательно, имеют описываться статистике Ферми, то в одной системе не может быть не только трех, но даже двух кварков с одинаковым набором квантовых чисел. Исходя из некоторых соображений, в частности для устранения противоречия с принципом Паули, было введено понятие «цвет» кварка. Возникла мысль, что каждый кварк может существовать в трех «окрашенных» формах: красной, зеленой, синей (отметим, что смесь этих цветов дает «нулевой» белый цвет). Тогда можно утверждать, что из квар-ки, образующие, например Q ~-гиперон, имеют различную окраску, поэтому принцип Паули не нарушается.

Сочетание «цветов» кварков в случае адронов должны быть таким, чтобы в целом «цвет» адронный был нулевым (т.е. адрон должен быть «бесцветным»). Так, в состав протона входят кварки и (красный), и (зеленый) и d (синий). В результате получают нулевой (белый) «цвет».

Антикварки считаются окрашенными в дополнительные «цвета» («ан-тикольоры»), дающие вместе с «цветом» нулевой «цвет». Поэтому мезоны, состоящие из кварка и антикварка, также имеют нулевой «цвет». В основном «цвет» кварка (подобно электрическому заряду) передает различие в свойствах, которая определяет притяжения и отталкивания кварков. По аналогии с квантами полей различных взаимодействий (фотонами в электромагнитном взаимодействии, я-мезонами в сильном взаимодействии и т. д.) введен частицы-переносчики взаимодействия между кварками. Эти частицы назвали глюонами (от англ. Glue - клей). Они переносят «цвет» от одного кварка в другой, в результате чего кварки удерживаются вместе.

Еще один характерный признак кварков - это их электрический заряд. Кварки d, s, Ъ имеют заряд -1 / 3, тогда как заряд кварков ц, с, t равен +2 / 3. Антикварки d, s, b и т. д. имеют противоположные по знаку электрические заряды, следовательно, электрический заряд антикварка d равен +1 / 3, антикварка и равна -2 / 3 и т. д. антикварка характеризуются также противоположными цветами: античервоним, анти-зеленым и антисиним. При образовании адронов кварки могут комбинироваться двумя путями: либо объединяются три кварки при одном кварк каждого «цвета», или кварк определенного «цвета» присоединяет к себе антикварк с соответствующим «антикварков». Эти комбинации называют «бесцветный», и они, кроме этого, имеют еще одну важную особенность. Во всех возможных комбинациях дробные электрические заряды кварков складываются так, что дают целочисленный суммарный заряд; никакие другие комбинации (кроме образованных сложением уже разрешенных комбинаций) не имеют такого свойства. Кварковой состав протона uud, дающий полный электрический заряд 2/3 + 2/3-1/3 или +1. Нейтрон состоит из кварков uud с зарядом 2/3-1/3-1/3, что в результате дает ноль. Положительный пион содержит кварк и и антикварк J, заряды их +2 / 3 и +1 / 3 дают в сумме +1.

Лептоны и кварки принято разбивать на три поколения. Каждое поколение состоит из заряженного лептона, соответствующего ему нейтрино и двух кварков, один из которых имеет заряд -1 / 3, а второй +2 / 3. Первое поколение состоит из электрона, электронного нейтрино, кварков diu. Поскольку кварки существуют в трех «цветах», это поколение содержит восемь частиц, представители других поколений наблюдаются практически только в лабораторных экспериментах с ускоренными частицами. В единой теории эти три поколения описываются независимо, но аналогичным образом.

На рис. 18.2 изображены три поколения лептонов и кварков: заряды в лептонов цели, в кварков - дробные. Лептоны существуют в свободном виде, а кварки являются лишь составляющими более сложных частиц - адронов. В обычной веществе содержатся частицы только с первого поколения. Развитие физики элементарных частиц допускает сложную структуру кварков и лептонов, т.е. они, в свою очередь, состоят из суб-кварков. Гипотеза субкваркив обсуждается многими учеными, хотя никому еще не удалось обойти трудности, которые встречаются на этом пути, очевидно, потому, что они имеют принципиальный характер.

Сейчас «внутренность» частиц изучена до размеров порядка 10 ~ 18 м, но субкваркив не обнаружено. Достаточно вероятно, что фундаментальные физические законы, известные ныне, перестают действовать на расстояниях, меньших чем 10 ~ 18 м, а открытие субкваркив, если оно состоится, приведет к изменению основных представлений о законах природы.

Мы рассмотрели некоторые проблемы физики элементарных частиц, которая изучает свойства вещества. Трудно предсказать ход развития этого раздела физики. Однако экспериментальные результаты в области физики элементарных частиц является надежной основой ее развития в будущем.

Проверил д. ф. н., профессор Артюхович Ю.В., Волгоград 2014

  • Bведение
  • Атомистический материализм
  • Элементарные частицы
  • Лептоны и кварки
  • Современное состояние физики элементарных частиц
  • Античастицы
  • Квантовый Чеширский кот
  • Заключение
  • Список использованных источников

Bведение

Ступень молекул, ступень атомов... Сегодня известно пять таких ступеней, пять этажей мироздания. Что находится на самых нижних из них? Есть ли что-нибудь еще глубже? Куда ведет эта лестница — в бездну бесконечного или же, в конце концов, мы спустимся в самый нижний этаж, в подземелье, где спрятаны главные тайны нашего мира?

Физика элементарных частиц находится на переднем крае фронта исследований структуры материи. Современное движение познания в более глубокую сущность вещей, к новому уровню строения материи связано с ломкой прежних физических представлений и развитием новых взглядов на сущность, структуру и закономерность как взаимодействий физических объектов на новом уровне, так и самих физических теорий.

Проблема материи на протяжении тысячелетий стояла в центре внимания как философской, так и (с момента ее появления) естественнонаучной мысли. От первых наивных представлений об элементах и стихиях вплоть до современных представлений о кварках, глюонах, суперструнах и т.д. - вот путь, пройденный человеческим познанием. Все более и более глубокое проникновение в строение окружающего нас мира неизменно было связано с философским анализом проблемы материи.

Сомнения вызывает само понятие “элементарные” применительно к частицам. Что имеется в виду, когда говорят, что такая-то частица - элементарная? Имеет ли вообще смысл разделение частиц на элементарные и неэлементарные? Гейзенберг в одной из своих статей подчеркивает противоречивость критерия элементарности. Иногда говорят, что для элементарной частицы вводится своя волновая функция и в этом состоит критерий элементарности. Встречается другой критерий: для элементарной частицы характерны значения заряда и спина, не превышающие определенных величин. Но для таких критериев нет никакой общей основы, они по существу произвольны. Они лишены того естественного характера, который Эйнштейн называл “внутренним совершенством” физической теории. Гейзенберг отвергает такие критерии, как, например, стабильность. Частицы при таком подходе оказываются элементарными или неэлементарными в зависимости от энергии: при одних энергиях частица стабильна, при других она распадается.

Кроме того, в теории взаимодействия частиц в рамках квантово-релятивистской картины мира взаимодействие представляется как обмен промежуточными - виртуальными частицами.

Виртуальные частицы - это теоретические объекты в современной квантовой теории поля, наделенные всеми характеристиками, что и реальные частицы, но не удовлетворяющие некоторым существенным условиям и ограничениям, накладываемым на характеристики реальных частиц. Виртуальные частицы характеризуются «мерцающим» бытием. Они не существуют таким же образом, как обычные частицы, и никогда не наблюдаются актуально. С точки зрения философии их адекватное понимание может быть достигнуто посредством концепции многомодусного бытия, в рамках которой объекты можно рассматривать сущими на двух модусах бытия - потенциальном и актуальном. При таком подходе виртуальные частицы необходимо исследовать как объекты, существование которых отнесено только к модусу потенциального бытия. Они никогда не наблюдаются как реальные, действительные объекты, выступая лишь на мгновение из потенциальности, никогда не актуализируясь полностью.

Итак, как устроен и из чего состоит наш мир в самых глубинных его слоях? Возникает масса вопросов, один сложнее другого.

Атомистический материализм

Американский физик Ричард Фейнман, много сделавший для нашего понимания глубинных этажей микромира, как-то заметил, что если бы Земле грозила гибель и нужно было бы предельно кратко закодировать наше самое главное и ценное научное достижение, он выбрал бы слово «атом». В нем огромный информационный заряд.

Знаменитый греческий ученый Фалес жил 2600 лет назад. Немногие свидетельства о его жизни, которые дошли до нас сквозь толщу тысячелетий, говорят, что это был общительный, жизнерадостный человек отменного здоровья, сочетавший занятия наукой со спортом. Но главная заслуга 4 Фалеса в том, что он первым поставил вопрос об исходных элементах мира. Он раньше всех увидел лестницу, ведущую в глубь вещества.

Важные выводы о глубинных свойствах вещей сделали последователи Фалеса — Левкипп и его ученик Демокрит. Они пропустили ступеньку молекул и сразу шагнули на ступень атомов.

Слово «атом», точнее «атмон», было известно задолго до Левкиппа и Демокрита. В переводе с греческого оно означает «неделимое». Так греки называли и букву алфавита. По Левкиппу и Демокриту, атомы — буквы материальной азбуки природы, бесконечное число твердых, неделимых далее частичек. Подобно семенам растений, атомы могут быть различной формы: они круглые, пирамидальные, плоские и так далее. Поэтому и состоящий из них мир неисчерпаемо богат в своих свойствах и качествах. Цепляясь друг за друга крючками и крючочками (такие крючочки есть и у семян растений), атомы образуют твердые тела. Атомы воды, наоборот, гладкие и скользкие, поэтому она растекается и не имеет формы. Атомы вязких жидкостей обладают заусеницами. Воздух — это пустота, в которой носятся отдельные редкие атомы. Даже у огня, учил Демокрит, есть свои атомы. Они острые и колючие, поэтому огонь и жжется.

Атомистика Левкиппа и Демокрита предлагала простое наглядное объяснение многим непонятным тогда фактам: почему от прикосновений верующих стирается позолота и «худеют» руки статуй богов, почему мел остается мелом, как бы тонко его ни истолкли, как распространяются запахи. Ведь иногда стоит только коснуться какого-либо вещества, и его запах много часов, а то и дней, сохраняется на руках и одежде. Подобных загадок было много. Конечно, их можно было объяснить и по-другому, поэтому древнегреческая атомистика — это только предположение, гениальная гипотеза. Для того чтобы превратить ее в строгий научный вывод, потребовалось почти двадцать пять веков. В средние века, когда место науки заняла слепая вера в то, что ответы на все вопросы содержатся в святом писании, атомистику причисляли к изобретениям дьявола. Сторонников атомного учения преследовали еще в XVII веке. В 1624 году в Париже был издан специальный декрет, грозивший смертной казнью за устное или письменное распространение этого учения.

Права гражданства атому вернули лишь в начале позапрошлого века в связи с успехами быстро развивавшейся химии. Без этого нельзя уже было разобраться в разнообразии химических реакций. Главную роль в восстановлении прав атома сыграл английский химик Джон Дальтон. Он же воскресил и стал широко использовать в своих трудах забытое греческое слово «атом».

Атомная теория Дальтона не была простым повторением древнегреческой атомистики. В новой теории число различных типов атомов хотя и велико — много десятков (на сегодняшний день известно 109 различных атомов), но все же не бесконечно, как у Демокрита. Дальтон нашел много фактов, убедивших ученых в том, что атомы — это неделимые частицы ограниченного числа наипростейших веществ — химических элементов. Все остальные вещества состоят из тесно связанных больших и малых групп атомов — молекул. Они могут быть самыми различными — от одноатомных молекул металлов до страшно сложных, состоящих из десятков тысяч атомов белковых молекул. Это самая первая ступенька структурной лестницы, атомы — следующая.

Элементарные частицы

Каждая картина мира отличается от других критерием элементарности. Начиная с V века до н. э. и кончая XX веком, существовало представление о бесструктурных неизменных элементах, которые движутся с различной скоростью, создают ансамбли переменной конфигурации, и именно эти изменения - движения частиц (их можно проследить от точки к точке и от мгновения к мгновению) лежат в основе всех процессов природы. С такой точки зрения, бесструктурная частица есть неизменная частица, всякое изменение - это изменение структуры. Теперь представим себе, что и бесструктурные элементы могут изменяться. Значит, изменение в природе не сводится к изменению структуры, к разделению, соединению, вообще перемещению дискретных частей вещества. Частицы аннигилируют, рождаются, частицы одного типа превращаются в частицы другого типа, и маловероятно, чтобы распад частиц был когда-либо объяснен по аналогии с распадом молекул и атомов.

Элементарные частицы в точном значении этого термина - первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя. В понятии "Элементарные частицы"в современной физике находит выражение идея о первообразных сущностях, определяющих все известные свойства материального мира, идея, зародившаяся на ранних этапах становления естествознания и всегда игравшая важную роль в его развитии.

Термин "Элементарные частицы"часто употребляется в современной физике не в своём точном значении, а менее строго - для наименования большой группы мельчайших частиц материи, подчинённых условию, что они не являются атомами или атомными ядрами (исключение составляет простейшее ядро атома водорода - протон). Как показали исследования, эта группа частиц необычайно обширна. Помимо упоминавшихся протона, нейтрона и электрона к ней относятся: фотон, пимезоны, мюоны, нейтрино трёх типов (электронное, мюонное и связанное с тяжёлым лептоном), странные частицы (К-мезоны и гипероны), разнообразные резонансы, открытые в 1974-77 y частицы, "очарованные"частицы, ипсилон-частицы и тяжёлые лептоны - всего более 350 частиц, в основном нестабильных. Число частиц, включаемых в эту группу, продолжает расти и, скорее всего, неограниченно велико; при этом большинство перечисленных частиц не удовлетворяет строгому определению элементарности, поскольку, по современным представлениям, они являются составными системами. Использование названия "Элементарные частицы"ко всем этим частицам имеет исторические причины и связано с тем периодом исследований (начало 30-х гг. 20 в.), когда единственно известными представителями данной группы были протон, нейтрон, электрон и частица электромагнитного поля - фотон. Эти четыре частицы тогда естественно было считать элементарными, т. к. они служили основой для построения окружающего нас вещества и взаимодействующего с ним электромагнитного поля, а сложная структура протона и нейтрона не была известна. Нарастание числа экспериментально обнаруживаемых субъядерных частиц, выявление у многих из них сложного строения показало, что они, как правило, не обладают 7 свойствами элементарности, но традиционное название "Элементарные частицы"за ними сохранилось.

Лептоны и кварки

Лептоны — группа частиц, не участвующих в сильном взаимодействии (название происходит от греческого слова «лептос» — «легкий»). Хотя лептоны могут иметь электрический заряд, а могут и не иметь, спин у всех у них равен Ѕ . Среди лептонов наиболее известен электрон. Электрон - это первая из открытых элементарных частиц. Как и все остальные лептоны, электрон, по-видимому, является элементарным (в собственном смысле этого слова) объектом. Насколько известно, электрон не состоит из каких-то других частиц.

Другой хорошо известный лептон - нейтрино. Нейтрино являются наиболее распространенными частицами по Вселенной. Вселенную можно представить безбрежным нейтринным морем, в котором изредка встречаются острова в виде атомов. Но несмотря на такую распространенность нейтрино, изучать их очень сложно. Как мы уже отмечали, нейтрино почти неуловимы. Не участвуя ни в сильном, ни в электромагнитном взаимодействиях, они проникают через вещество, как будто его вообще нет. Нейтрино - это некие "призраки физического мира".

В 60-х годах список лептонов значительно расширился. Было установлено, что существует несколько типов нейтрино: электронное нейтрино, мюонное нейтрино и тау-нейтрино. Таким образом, общее число разновидностей нейтрино равно трем, а общее число лептонов - шести. Разумеется, у каждого лептона есть своя античастица; таким образом, общее число различных лептонов равно двенадцати. Нейтральные лептоны участвуют только в слабом взаимодействии; заряженные - в слабом и электромагнитном.

Для просмотра полной версии скачайте pdf файл реферата.

Заключение

Современная теория физики элементарных частиц не имеет решения ряда крупных физических проблем: происхождение массы, электрического заряда, тождественности масс частиц, изменение массы элементарных частиц во времени и некоторых других. Естественно, надо считаться с тем, что некоторые проблемы не могут быть решены на сегодняшнем этапе развития науки - для них не настало время. Можно привести исторический пример. В конце ХIХ - начале ХХ вв. теоретиками обсуждалась проблема структуры атома и электрона. Модель строения атома была дана Резер- фордом. Структура электрона рассматривалась в начале ХХ в. в работах Абрагама, Лоренца, Пуанкаре. Однако до сих пор физики считают электрон точечной частицей, и у них нет необходимости отказаться от этого представления.

Новейшее развитие физики элементарных частиц явно выделяет из всех элементарных частиц группу частиц, которые существенным образом определяют специфику процессов микромира. Эти частицы - возможные кандидаты на роль истинно элементарных частиц. К их числу принадлежат: частицы со спином 1/2 - лептоны и кварки, а также частицы со спином 1 - глюоны, фотон, массивные промежуточные бозоны, осуществляющие разные виды взаимодействий частиц со спином 1/2. В эту группу скорее всего следует также включить частицу со спином 2 - гравитон; квант гравитационного поля, связывающий все элементарные частицы. В этой схеме многие вопросы, однако, требуют дальнейшего исследования.

Итак, если не считать хиггсовых частиц, число которых пока еще за- висит от конкретного варианта теории, то после «великого объединения» всех четырех типов взаимодействий остаются только три частицы: частица- кирпичик, соответствующий ей «антикирпичик» и частица-волан.

Казалось бы, наконец-таки физика достигла самого дна природы: объединены все силы, число частиц сокращено до предела, создана и шлифуется единая теория. Природа, однако, любит сюрпризы. Внутри новой теории физики неожиданно обнаружили мину, готовую вдребезги разнести все надежды на построение «последней теории всех сил и взаимодействий».

Физические теории обладают замечательным свойством: их математические формулы не просто описывают опыт, а являются его обобщением, и поэтому их содержание всегда значительно богаче исходных экспериментальных данных. Они предсказывают новые факты и часто приводят к выводам, которые их создатели не ожидали. Так случилось и в этот раз. Из формул теории следует, что лептоны и кварки, по-видимому, состоят из еще более мелких «зернышек».

Может случиться так, что, изучая микромир, мы будем встречаться со все большей и большей энергией, и конца не будет — круг, так сказать, замкнется: в микромире мы снова встретимся с объектами и явлениями макроскопического масштаба. Не исключено, что в недрах элементарных частиц природа спрятала вторые ворота в космос и «выйти к звездам» можно не только на ракетах, но и с помощью ускорителей. Правда, космические ворота микромира необычайно узкие и преодолеть их труднее, чем верблюду пролезть сквозь угольное ушко. Однако это не более, чем "безумное"воображение (хотя, кто может знать достоверно об истинном устройстве природы?). Без опыта тут нельзя ничего сказать.

Проблему описания элементарных объектов лучше всего отражают слова выдающегося советского физика Л. Д. Ландау: "Человеку, далекому от физики, трудно представить себе, насколько глубоко физика зашла в своем понимании законов природы и какая фантастическая картина при этом открылась. Картина настолько фантастическая, что человеческое воображение часто уже отказывается служить. И, может быть, величайшим триумфом человеческого гения является то, что человек может понять вещи, которые он уже не в силах вообразить."

В целом квантовая механика — совершенно уникальная научная дисциплина, научившаяся справляться с обширным кругом явлений в отсутствие их понимания. Физики насчет понимания могут спорить, но это вопрос терминологии. Естественное раздражение аудитории по поводу отсутствия интерпретаций в обычных понятиях — адресовать надо, скорее всего, не физикам, а Создателю.

Для просмотра полной версии скачайте pdf файл реферата.

Страница 8

В природе между элементарными частицами действует не один, а иногда в одно и то же время несколько типов взаимного влияния и свойства и структура частиц определяется общностью всех типов взаимного влияния, принимающих участие. Например, протон, входящий в адронный тип элементарных частиц, принимает участие в сильном взаимном влиянии, и в электромагнитном взаимном влиянии в связи с тем, что он является электрически заряженной частицей. С другой стороны, протон может зародиться в процессе b распада нейтрона, то есть в слабых взаимных влияниях, таким образом, он связан со слабыми взаимными влияниями. И наконец, протон как материальное образование, обладающее массой, принимает участие в гравитационных взаимных влияниях. В отличие от протона целый ряд элементарных частиц принимают участие во всех типах взаимного влияния, а только в некоторых их типах. Например, нейтрон в силу того, что он является, незаряженной частицей он не принимает участия в электромагнитных взаимных влияниях, а электрон и мю-мезоны – в сильных взаимных влияниях. Фундаментальные взаимные влияния являются причиной превращения частиц – их уничтожения и зарождения. Например, в результате столкновения нейтрона и протона образуются два нейтрона и один положительный пимезон.

Срок превращения элементарных частиц зависит от взаимовлияющей силы. Ядерные реакции, связанные с сильными взаимными влияниями, происходят за 10-24 – 10-23 секунды. Это, период когда элементарная частица переходит в частицу высокой энергии и приобретает скорость, близкую к скорости света, размеры порядка 10-13 см. Обусловленные электромагнитными взаимными влияниями изменения происходят за 10-21 – 10-19 секунды, обусловленные слабыми взаимными влияниями изменения (например, процесс распада элементарных частиц) – за 10-10 секунды.

К периоду протекания различных изменений, происходящих в микромире, можно подходить с точки зрения рассуждений о создающих взаимных влияниях.

Кванты взаимного влияния элементарных частиц реализуются посредством соответствующих этим частицам физических полей. Под полем в современной квантовой теории понимается система частиц, меняющихся в числе (половые кванты). Состояние, когда поле, и вообще, полевые кванты существуют с самой малой энергией, называется вакуумом. Частицы электромагнитного поля (фотоны) в вакууме в состоянии возбуждения теряют механические свойства, которые они содержат и которые присущи корпускулярной материи (например во время движения тело не чувствует трения).

Вакуум не содержит простые виды материи, однако, не смотря на это он не пустота в истинном смысле слова, так в вакуумном возбуждении возникают кванты электромагнитного поля – фотоны, реализующие электромагнитное взаимное влияние. В вакууме в дополнении электромагнитному полю существуют другие физические поля, в том числе пока не отмеченное в эксперименте по так называемым гравитонным экспериментам гравитационное поле.

Квантовое поле – совокупность квантов, носит дискретный характер. Так взаимные влияния элементарных частиц, их взаимные превращения, излучение и поглощение фотонов носит дискретный характер и происходит только в ситуации квантатирования. В результате возникает такой вопрос: в чём конкретно проявляется непрерывность поля, его континуальность? Как в квантовой электродинамике, так и в квантовой механике состояние поля описывается однозначно не наблюдаемыми реальными явлениями, а только посредством волновой функции, связанной с взаимным понятием. Квадрат модуля этой функции показывает возможность наблюдать рассматриваемые физические явления.

Основная проблема квантовой теории поля – описание различных типов взаимных влияний частиц в соответствующих уравнениях. Эта проблема нашла своё решение пока только в квантовой электродинамике, описывающей взаимные влияния электронов, позитронов и фотонов. Для сильных и слабых взаимных влияний пока не создана квантовая теория поля. В настоящее время эти виды взаимного влияния описываются не строгими методами. Хотя известно, что невозможно понять элементарные частицы если они не находятся в соответствующей физической теории, невозможно понять их структуру, определяемую структурой этих теории. Поэтому проблема структуры элементарных частиц еще до конца не решена.1 Современная физика в настоящий период доказывает существование сложных частиц, которые обладают внутренним строением частиц, считающихся «элементарными». Стало известно, что протон и нейтрон в результате происходящих в них виртуальных процессов подвергаются внутренним превращениям. В результате опытов, проведённых по изучению строения протонов, было определено, что протон, считавшийся до последнего времени неделимым, самым простым и бесструктурным в действительности является сложной частицей. В его центре находится плотное ядро, называющиеся «керн», оно окружёно положительными пи-мезонами.

Сложность строения «элементарных» частиц была доказана выдвинутой в 1964 году американским учёным Гель-Манном и независимо от него шведским учёным Цвейгом гипотезой кварков. Согласно этой гипотезе элементарные частицы с отношениями, характеризующимися сильными взаимными влияниями (адроны: протон, нейтрон, гипероны), должны формироваться из кварков-частиц, заряд которых равен одной третьей или двум третьим заряда электрона. Таким образом, теория показывает, что у формирующих частицы отмечённых кварков электрический и барионный заряд должен выражаться дробным числом. Действительно, называемые кварками частицы пока не обнаружены и остаются гипотетическими обитателями микромира на нынешнем уровне развития науки.

Таким образом, с одной стороны ясно, что элементарные частицы обладают особой структурой, с другой стороны, характер этой структуры ещё остаётся неясным. Из вышеприведенных данных становится ясным, что элементарные частицы вовсе не элементарные, они обладают внутренней структурой, могут делиться и превращаться друг в друга. Мы ещё очень мало знаем обоих строении. Таким образом, на сегодняшний день основываясь на целый ряд фактов, мы можем утверждать, что материя элементарных частиц – новый вид, качественно отличающийся от более сложных частиц (ядро, атом, молекула). В тоже время это различие настолько существенно, что используемые нами при изучении ядер, атомов, молекул, макроскопических тел категории и выражения («простой» и «сложный», «внутренняя структура», «сформированный») и могут применяться к элементарным частицам. Понятия «простой и сложный», «составляющие части», «структура», «целый» являются, в общем относительными понятиями. Например, несмотря на то, что атом обладает сложным строением, и структура его состоит из ядерного и электронного ярусов, по сравнению с входящей в его состав молекулой является более простым.

Проникновение в глубины микромира связано с переходом от уровня атомов к уровню элементарных частиц. В качестве первой элементарной частицы в конце ХIХ в. был открыт электрон, а затем в первое десятилетие ХХ в - фотон, протон, позитрон и нейтрон. После второй мировой войны, благодаря использованию современной экспериментальной техники, и прежде всего мощным ускорителям, в которых создаются условия высоких энергий и громадных скоростей, было установлено существование большого числа элементарных частиц - свыше 300. Среди них имеются как экспериментально обнаруженные, так и теоретически вычисленные, включая резонансы, кварки и виртуальные частицы.

Термин «элементарная частица» первоначально означал простейшие, далее ни на что не разложимые частицы, лежащие в основе любых материальных образований. Позднее физики осознали всю условность термина «элементарный» применительно к микрообъектам. Сейчас уже не подлежит сомнению, что частицы имеют сложную структуру, но исторически сложившееся название продолжает существовать

Основными характеристиками элементарных частиц являются: масса, заряд, среднее время жизни, спин и квантовые числа . Массу покоя элементарных частиц определяют по отношению к массе покоя электрона. Существуют элементарные частицы, не имеющие массы покоя, - фотоны. Остальные частицы по этому признаку делятся на лептоны легкие частицы (электрон, мюон, нейтрино); мезоны средние частицы с массой в пределах от одной до тысячи масс электрона (p-мезоны, К – мезоны); барионы тяжелые частицы, чья масса превышает тысячу масс электрона (протоны, нейтроны, гипероны и многие резонансы).

Электрический заряд является другой важнейшей характеристикой элементарных частиц. Все известные частицы обладают положительным, отрицательным, либо нулевым зарядом. Каждой частице, кроме фотона и двух мезонов, соответствуют античастицы с противоположным зарядом. В 1964 году ученые выдвинули идею кварков, т.е. частиц, имеющих дробные заряды, из которых состоят все элементарные частицы. Эта гипотеза получила широкое распространение в научном мире, хотя окончательного экспериментального подтверждения пока не нашла.

По времени жизни частицы делятся на стабильные и нестабильные. Стабильных частиц пять: фотон, две разновидности нейтрино, электрон, и протон. Именно стабильные частицы играют важнейшую роль в структуре макротел. Все остальные частицы нестабильны, они существуют около10 -10 – 10 -24 с, после чего распадаются. Элементарные частицы со средним временем жизни 10 -23 – 10 -24 с называются резонансами . Вследствие краткого времени жизни они распадаются ещё до того, как успеют покинуть атом или атомное ядро. Резонансные состояния вычислены теоретически, зафиксировать их в реальных экспериментах не удается.


Помимо заряда, массы и времени жизни, элементарные частицы описываются также понятиями, не имеющими аналогов в классической физике: понятием «спина», или собственного момента количества движения микрочастицы, и понятием «квантовых чисел», выражающих состояние элементарных частиц.

В характеристике элементарных частиц существует ещё одно важное представление – взаимодействие. Различают четыре вида фундаментальных взаимодействий в природе: сильное, электромагнитное, слабое и гравитационное. Свойства элементарных частиц определяются в основном первыми тремя видами взаимодействия.

Сильное взаимодействие происходит на уровне атомных ядер и представляет собой взаимное притяжение и отталкивание их составных частей. Оно действует на расстоянии порядка 10 -13 см. При определенных условиях сильное взаимодействие очень прочно связывают частицы, в результате чего образуются материальные системы с высокой энергией связи – атомные ядра. Именно по этой причине ядра атомов являются устойчивыми, их трудно разрушить.

Электромагнитное взаимодействие примерно в тысячу раз слабее сильного, но значительно более дальнодействующее. Носителем электромагнитного взаимодействия является не имеющий заряда фотон – квант электромагнитного поля. В процессе электромагнитного взаимодействия электроны и атомные ядра соединяются в атомы, атомы – в молекулы. Это взаимодействие является основным в химии и биологии.

Слабое взаимодействие возможно между различными частицами на расстоянии 10 -15 – 10 -22 см и связано главным образом с распадом частиц. Согласно современному уровню знаний, большинство частиц нестабильны именно благодаря слабому взаимодействию.

Гравитационное взаимодействие – самое слабое, не учитываемое в теории элементарных частиц. Однако на ультра-малых расстояниях (порядка 10 -33 см) и при ультра больших энергиях гравитация вновь приобретает существенное значение. В космических масштабах гравитационное взаимодействие (тяготение) имеет решающее значение. Радиус его действия не ограничен.

В природе, как правило, проявляется не один, а одновременно несколько типов взаимодействия, и свойства многих частиц определяются всеми четырьмя типами. Фундаментальные взаимодействия приводят к превращению частиц: их уничтожению и созданию. От силы взаимодействия зависит время, в течение которого совершается превращение элементарных частиц. Поэтому по времени различных превращений можно судить о силе связанных с ними взаимодействий. Взаимодействия элементарных частиц осуществляются посредствам соответствующих физических полей, квантами которых они являются.

В современной квантовой теории поля под полем понимается система с переменным числом частиц (квантов поле). Самое низкое энергетическое состояние поля, в котором вообще нет квантов поля, называется вакуумом. В состоянии вакуума при отсутствии возбуждения электромагнитное поле не содержит частиц (фотонов). В этом состоянии оно не обладает механическими свойствами, присущими корпускулярному веществу. Вакуум не содержит обычных видов материи, однако он не пуст в прямом смысле слова, поскольку при соответствующем возбуждении в нем появляются фотоны – кванты электромагнитного поля, посредством которых осуществляется электромагнитное взаимодействие. В вакууме присутствуют и другие физические поля, в частности гравитационное, кванты которого, гравитоны, предсказаны теоретически, но экспериментально пока не зафиксированы.

Основная проблема квантовой теории поля – проблема взаимодействия частиц разного типа. Пока она решена лишь в кантовой электродинамике, описывающей взаимодействие электронов, позитронов и фотонов. Квантовая теория поля для сильных и слабых взаимодействий до сих пор не разработана. Они описываются посредством нестрогих методов, хотя ясно, что без соответствующей теории невозможно понять структуру элементарных частиц, которая определяется именно их взаимодействием. Поэтому окончательно не решен и вопрос о структуре элементарных частиц. Согласно современным представлениям, структура элементарных частиц описывается посредством непрерывно возникающих и снова распадающихся «виртуальных» частиц. Формальное привлечение виртуальных частиц означает, что внутреннюю структуру элементарных частиц невозможно описать через другие частицы.

Важнейшее направление развития современной физики – это так называемое «Великое объединение» - попытка свести все четыре вида физического взаимодействия (сильного, слабого, гравитационного и электромагнитного) к одному фундаментальному взаимодействию, которое позволило бы объяснить физическую форму движения материи в целом и создать наиболее фундаментальную физическую теорию. Многие ученые считают, что такую теорию можно создать только при учете космологических обстоятельств, исследовании таких ситуаций, где микромир оказывается связанным с мегамиром, ультрамалое с ультрабольшим, физика с астрономией и космологией.

Министерство Российской Федерации

Саратовский Юридический институт

Самарский филиал

кафедра ПИ и ПКТРП

Реферат

На тему: Элементарные частицы

Выполнил: курсант 421 уч.группы

рядовой милиции

Сизоненко А.А.

Проверил: преподаватель кафедры

Кузнецов С.И.

Самара 2002

План

1) Введение.

2)

3) Основные свойства элементарных частиц. Классы взаимодействий.

4)

5)

а) Унитарная симметрия.

б) Кварковая модель адронов

6)

7) Заключение. Некоторые общие проблемы теории элементарных частиц.

Введение .

Э. ч. в точном значении этого термина - первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя. В понятии "Э. ч." в современной физике находит выражение идея о первообразных сущностях, определяющих все известные свойства материального мира, идея, зародившаяся на ранних этапах становления естествознания и всегда игравшая важную роль в его развитии.

Понятие "Э. ч." сформировалось в тесной связи с установлением дискретного характера строения вещества на микроскопическом уровне. Обнаружение на рубеже 19-20 вв. мельчайших носителей свойств вещества - молекул и атомов - и установление того факта, что молекулы построены из атомов, впервые позволило описать все известные вещества как комбинации конечного, хотя и большого, числа структурных составляющих - атомов. Выявление в дальнейшем наличия составных слагающих атомов - электронов и ядер, установление сложной природы ядер, оказавшихся построенными всего из двух типов частиц (протонов и нейтронов), существенно уменьшило количество дискретных элементов, формирующих свойства вещества, и дало основание предполагать, что цепочка составных частей материи завершается дискретными бесструктурными образованиями - Э. ч. Такое предположение, вообще говоря, является экстраполяцией известных фактов и сколько-нибудь строго обосновано быть не может. Нельзя с уверенностью утверждать, что частицы, элементарные в смысле приведённого определения, существуют. Протоны и нейтроны, например, длительное время считавшиеся Э. ч., как выяснилось, имеют сложное строение. Не исключена возможность того, что последовательность структурных составляющих материи принципиально бесконечна. Может оказаться также, что утверждение "состоит из..." на какой-то ступени изучения материи окажется лишённым содержания. От данного выше определения "элементарности" в этом случае придется отказаться. Существование Э. ч. - это своего рода постулат, и проверка его справедливости - одна из важнейших задач физики.

Термин "Э. ч." часто употребляется в современной физике не в своём точном значении, а менее строго - для наименования большой группы мельчайших частиц материи, подчинённых условию, что они не являются атомами или атомными ядрами (исключение составляет простейшее ядро атома водорода - протон). Как показали исследования, эта группа частиц необычайно обширна. Помимо упоминавшихся протона (р), нейтрона (n) и электрона (e -) к ней относятся: фотон (g), пи-мезоны (p), мюоны (m), нейтрино трёх типов (электронное v e , мюонное v m и связанное с т. н. тяжёлым лептоном v t), т. н. странные частицы (К-мезоны и гипероны), разнообразные резонансы, открытые в 1974-77 y-частицы, "очарованные" частицы, ипсилон-частицы (¡) и тяжёлые лептоны (t + , t -) - всего более 350 частиц, в основном нестабильных. Число частиц, включаемых в эту группу, продолжает расти и, скорее всего, неограниченно велико; при этом большинство перечисленных частиц не удовлетворяет строгому определению элементарности, поскольку, по современным представлениям, они являются составными системами (см. ниже). Использование названия "Э. ч." ко всем этим частицам имеет исторические причины и связано с тем периодом исследований (начало 30-х гг. 20 в.), когда единственно известными представителями данной группы были протон, нейтрон, электрон и частица электромагнитного поля - фотон. Эти четыре частицы тогда естественно было считать элементарными, т. к. они служили основой для построения окружающего нас вещества и взаимодействующего с ним электромагнитного поля, а сложная структура протона и нейтрона не была известна.

Открытие новых микроскопических частиц материи постепенно разрушило эту простую картину. Вновь обнаруженные частицы, однако, во многих отношениях были близки к первым четырём известным частицам. Объединяющее их свойство заключается в том, что все они являются специфическими формами существования материи, не ассоциированной в ядра и атомы (иногда по этой причине их называют "субъядерными частицами"). Пока количество таких частиц было не очень велико, сохранялось убеждение, что они играют фундаментальную роль в строении материи, и их относили к категории Э. ч. Нарастание числа субъядерных частиц, выявление у многих из них сложного строения показало, что они, как правило, не обладают свойствами элементарности, но традиционное название "Э. ч." за ними сохранилось.

В соответствии со сложившейся практикой термин "Э. ч." будет употребляться ниже в качестве общего назв. субъядерных частиц. В тех случаях, когда речь будет идти о частицах, претендующих на роль первичных элементов материи, при необходимости будет использоваться термин "истинно Э. ч.".

Краткие исторические сведения.

Открытие Э. ч. явилось закономерным результатом общих успехов в изучении строения вещества, достигнутых физикой в конце 19 в. Оно было подготовлено всесторонними исследованиями оптических спектров атомов, изучением электрических явлений в жидкостях и газах, открытием фотоэлектричества, рентгеновских лучей, естественной радиоактивности, свидетельствовавших о существовании сложной структуры материи.

Исторически первой открытой Э. ч. был электрон - носитель отрицательного элементарного электрического заряда в атомах. В 1897 Дж. Дж. Томсон установил, что т. н. катодные лучи образованы потоком мельчайших частиц, которые были названы электронами. В 1911 Э. Резерфорд, пропуская альфа-частицы от естественного радиоактивного источника через тонкие фольги различных веществ, выяснил, что положительный заряд в атомах сосредоточен в компактных образованиях - ядрах, а в 1919 обнаружил среди частиц, выбитых из атомных ядер, протоны - частицы с единичным положительным зарядом и массой, в 1840 раз превышающей массу электрона. Другая частица, входящая в состав ядра, - нейтрон - была открыта в 1932 Дж. Чедвиком при исследованиях взаимодействия a-частиц с бериллием. Нейтрон имеет массу, близкую к массе протона, но не обладает электрическим зарядом. Открытием нейтрона завершилось выявление частиц - структурных элементов атомов и их ядер.

Вывод о существовании частицы электромагнитного поля - фотона - берёт своё начало с работы М. Планка (1900). Предположив, что энергия электромагнитного излучения абсолютно чёрного тела квантованна, Планк получил правильную формулу для спектра излучения. Развивая идею Планка, А. Эйнштейн (1905) постулировал, что электромагнитное излучение (свет) в действительности является потоком отдельных квантов (фотонов), и на этой основе объяснил закономерности фотоэффекта. Прямые экспериментальные доказательства существования фотона были даны Р. Милликеном (1912- 1915) и А. Комптоном (1922; см. Комптона эффект).

Открытие нейтрино - частицы, почти не взаимодействующей с веществом, ведёт своё начало от теоретической догадки В. Паули (1930), позволившей за счёт предположения о рождении такой частицы устранить трудности с законом сохранения энергии в процессах бета-распада радиоактивных ядер. Экспериментально существование нейтрино было подтверждено лишь в 1953 (Ф. Райнес и К Коуэн, США).

С 30-х и до начала 50-х гг. изучение Э. ч. было тесно связано с исследованием космических лучей. В 1932 в составе космических лучей К. Андерсоном был обнаружен позитрон (е +) - частица с массой электрона, но с положительным электрическим зарядом. Позитрон был первой открытой античастицей (см. ниже). Существование е + непосредственно вытекало из релятивистской теории электрона, развитой П. Дираком (1928-31) незадолго до обнаружения позитрона. В 1936 американские физики К. Андерсон и С. Неддермейер обнаружили при исследовании осмических лучей мюоны (обоих знаков электрического заряда) - частицы с массой примерно в 200 масс электрона, а в остальном удивительно близкие по свойствам к е - , е + .

В 1947 также в космических лучах группой С. Пауэлла были открыты p + и p - -мезоны с массой в 274 электронные массы, играющие важную роль во взаимодействии протонов с нейтронами в ядрах. Существование подобных частиц было предположено Х. Юкавой в 1935.

Конец 40-х - начало 50-х гг. ознаменовались открытием большой группы частиц с необычными свойствами, получивших название "странных". Первые частицы этой группы К + - и К - -мезоны, L-, S + -, S - -, X - -гипероны были открыты в космических лучах, последующие открытия странных частиц были сделаны на ускорителях - установках, создающих интенсивные потоки быстрых протонов и электронов. При столкновении с веществом ускоренные протоны и электроны рождают новые Э. ч., которые и становятся предметом изучения.

С начала 50-х гг. ускорители превратились в основной инструмент для исследования Э. ч. В 70-х гг. энергии частиц, разогнанных на ускорителях, составили десятки и сотни млрд. электронвольт (Гэв ). Стремление к увеличению энергий частиц обусловлено тем, что высокие энергии открывают возможность изучения строения материи на тем меньших расстояниях, чем выше энергия сталкивающихся частиц. Ускорители существенно увеличили темп получения новых данных и в короткий срок расширили и обогатили наше знание свойств микромира. Применение ускорителей для изучения странных частиц позволило более детально изучить их свойства, в частности особенности их распада, и вскоре привело к важному открытию: выяснению возможности изменения характеристик некоторых микропроцессов при операции зеркального отражения (см. Пространственная инверсия) - т. н. нарушению пространств. чётности (1956). Ввод в строй протонных ускорителей с энергиями в миллиарды эв позволил открыть тяжёлые античастицы: антипротон (1955), антинейтрон (1956), антисигма-гипероны (1960). В 1964 был открыт самый тяжёлый гиперон W - (с массой около двух масс протона). В 1960-х гг. на ускорителях было открыто большое число крайне неустойчивых (по сравнению с др. нестабильными Э. ч.) частиц, получивших название "резонансов". Массы большинства резонансов превышают массу протона. Первый из них D 1 (1232) был известен с 1953. Оказалось, что резонансы составляют основная часть Э. ч.

В 1962 было выяснено, что существуют два разных нейтрино: электронное и мюонное. В 1964 в распадах нейтральных К-мезонов. было обнаружено несохранение т, н. комбинированной чётности (введённой Ли Цзун-дао и Ян Чжэнь-нином и независимо Л. Д. Ландау в 1956; см. Комбинированная инверсия), означающее необходимость пересмотра привычных взглядов на поведение физических процессов при операции отражения времени (см. Теорема СРТ).

В 1974 были обнаружены массивные (в 3-4 протонные массы) и в то же время относительно устойчивые y-частицы, с временем жизни, необычно большим для резонансов. Они оказались тесно связанными с новым семейством Э. ч. - "очарованных", первые представители которого (D 0 , D + , L с) были открыты в 1976. В 1975 были получены первые сведения о существовании тяжёлого аналога электрона и мюона (тяжёлого лептона t). В 1977 были открыты ¡-частицы с массой порядка десятка протонных масс.

Таким образом, за годы, прошедшие после открытия электрона, было выявлено огромное число разнообразных микрочастиц материи. Мир Э. ч. оказался достаточно сложно устроенным. Неожиданными во многих отношениях оказались свойства обнаруженных Э. ч. Для их описания, помимо характеристик, заимствованных из классической физики, таких, как электрический заряд, масса, момент количества движения, потребовалось ввести много новых специальных характеристик, в частности для описания странных Э. ч. - странность (К. Нишиджима, М. Гелл-Ман, 1953), "очарованных" Э. ч. - "очарование" (американские физики Дж. Бьёркен, Ш. Глэшоу, 1964); уже названия приведённых характеристик отражают необычность описываемых ими свойств Э. ч.

Изучение внутреннего строения материи и свойств Э. ч. с первых своих шагов сопровождалось радикальным пересмотром многих устоявшихся понятий и представлений. Закономерности, управляющие поведением материи в малом, оказались настолько отличными от закономерностей классической механики и электродинамики, что потребовали для своего описания совершенно новых теоретических построений. Такими новыми фундаментальными построениями в теории явились частная (специальная) и общая теория относительности (А. Эйнштейн, 1905 и 1916; см. Относительности теория, Тяготение) и квантовая механика (1924-27; Н. Бор, Л. де Бройль, В. Гейзенберг, Э. Шрёдингер, М. Борн). Теория относительности и квантовая механика знаменовали собой подлинную революцию в науке о природе и заложили основы для описания явлений микромира. Однако для описания процессов, происходящих с Э. ч., квантовой механики оказалось недостаточно. Понадобился следующий шаг - квантование классических полей (т. н. квантование вторичное) и разработка квантовой теории поля. Важнейшими этапами на пути её развития были: формулировка квантовой электродинамики (П. Дирак, 1929), квантовой теории b-распада (Э. Ферми, 1934), положившей начало современной теории слабых взаимодействий, квантовой мезодинамики (Юкава, 1935). Непосредственной предшественницей последней была т. н. b-теория ядерных сил (И. Е. Тамм, Д. Д. Иваненко, 1934; см. Сильные взаимодействия). Этот период завершился созданием последовательного вычислительного аппарата квантовой электродинамики (С. Томонага, Р. Фейнман, Ю. Швингер; 1944-49), основанного на использовании техники перенормировки (см. Квантовая теория поля). Эта техника была обобщена впоследствии применительно к другим вариантам квантовой теории поля.

Квантовая теория поля продолжает развиваться и совершенствоваться и является основой для описания взаимодействий Э. ч. У этой теории имеется ряд существенных успехов, и всё же она ещё очень далека от завершённости и не может претендовать на роль всеобъемлющей теории Э. ч. Происхождение многих свойств Э. ч. и природа присущих им взаимодействий в значительной мере остаются неясными. Возможно, понадобится ещё не одна перестройка всех представлений и гораздо более глубокое понимание взаимосвязи свойств микрочастиц и геометрических свойств пространства-времени, прежде чем теория Э. ч. будет построена.

Основные свойства элементарных частиц. Классы взаимодействий.

Все Э. ч. являются объектами исключительно малых масс и размеров. У большинства из них массы имеют порядок величины массы протона, равной 1,6×10 -24 г (заметно меньше лишь масса электрона: 9×10 -28 г). Определённые из опыта размеры протона, нейтрона, p-мезона по порядку величины равны 10 -13 см. Размеры электрона и мюона определить не удалось, известно лишь, что они меньше 10 -15 см. Микроскопические массы и размеры Э. ч. лежат в основе квантовой специфики их поведения. Характерные длины волн, которые следует приписать Э. ч. в квантовой теории (, где - постоянная Планка, m - масса частицы, с - скорость света) по порядку величин близки к типичным размерам, на которых осуществляется их взаимодействие (например, для p-мезона 1,4×10 -13 см). Это и приводит к тому, что квантовые закономерности являются определяющими для Э. ч.

Наиболее важное квантовое свойство всех Э. ч. - их способность рождаться и уничтожаться (испускаться и поглощаться) при взаимодействии с др. частицами. В этом отношении они полностью аналогичны фотонам. Э. ч. - это специфические кванты материи, более точно - кванты соответствующих физических полей (см. ниже). Все процессы с Э. ч. протекают через последовательность актов их поглощения и испускания. Только на этой основе можно понять, например, процесс рождения p + -мезона при столкновении двух протонов (р + р ® р + n+ p +) или процесс аннигиляции электрона и позитрона, когда взамен исчезнувших частиц возникают, например, два g-кванта (е + +е - ® g + g). Но и процессы упругого рассеяния частиц, например е - +p ® е - + р, также связаны с поглощением начальных частиц и рождением конечных частиц. Распад нестабильных Э. ч. на более лёгкие частицы, сопровождаемый выделением энергии, отвечает той же закономерности и является процессом, в котором продукты распада рождаются в момент самого распада и до этого момента не существуют. В этом отношении распад Э. ч. подобен распаду возбуждённого атома на атом в основном состоянии и фотон. Примерами распадов Э. ч. могут служить: ; p + ® m + + v m ; К + ® p + + p 0 (знаком "тильда" над символом частицы здесь и в дальнейшем помечены соответствующие античастицы).

Различные процессы с Э. ч. заметно отличаются по интенсивности протекания. В соответствии с этим взаимодействия Э. ч. можно феноменологически разделить на несколько классов: сильные, электромагнитные и слабые взаимодействия. Все Э. ч. обладают, кроме того, гравитационным взаимодействием.

Сильные взаимодействия выделяются как взаимодействия, которые порождают процессы, протекающие с наибольшей интенсивностью среди всех остальных процессов. Они приводят и к самой сильной связи Э. ч. Именно сильные взаимодействия обусловливают связь протонов и нейтронов в ядрах атомов и обеспечивают исключительную прочность этих образований, лежащую в основе стабильности вещества в земных условиях.

Электромагнитные взаимодействия характеризуются как взаимодействия, в основе которых лежит связь с электромагнитным полем. Процессы, обусловленные ими, менее интенсивны, чем процессы сильных взаимодействий, а порождаемая ими связь Э. ч. заметно слабее. Электромагнитные взаимодействия, в частности, ответственны за связь атомных электронов с ядрами и связь атомов в молекулах.

Слабые взаимодействия, как показывает само название, вызывают очень медленно протекающие процессы с Э. ч. Иллюстрацией их малой интенсивности может служить тот факт, что нейтрино, обладающие только слабыми взаимодействиями, беспрепятственно пронизывают, например, толщу Земли и Солнца. Слабые взаимодействия обусловливают также медленные распады т. н. квазистабильных Э. ч. Времена жизни этих частиц лежат в диапазоне 10 -8 -10 -10 сек, тогда как типичные времена для сильных взаимодействий Э. ч. составляют 10 -23 -10 -24 сек.

Гравитационные взаимодействия, хорошо известные по своим макроскопическим проявлениям, в случае Э. ч. на характерных расстояниях ~10 -13 см дают чрезвычайно малые эффекты из-за малости масс Э. ч.

Силу различных классов взаимодействий можно приближённо охарактеризовать безразмерными параметрами, связанными с квадратами констант соответствующих взаимодействий. Для сильных, электромагнитных, слабых и гравитационных взаимодействий протонов при средней энергии процесса ~1 Гэв эти параметры соотносятся как 1:10 -2: l0 -10:10 -38 . Необходимость указания средней энергии процесса связана с тем, что для слабых взаимодействий безразмерный параметр зависит от энергии. Кроме того, сами интенсивности различных процессов по-разному зависят от энергии. Это приводит к тому, что относительная роль различных взаимодействий, вообще говоря, меняется с ростом энергии взаимодействующих частиц, так что разделение взаимодействий на классы, основанное на сравнении интенсивностей процессов, надёжно осуществляется при не слишком высоких энергиях. Разные классы взаимодействий имеют, однако, и другую специфику, связанную с различными свойствами их симметрии (см. Симметрия в физике), которая способствует их разделению и при более высоких энергиях. Сохранится ли такое деление взаимодействий на классы в пределе самых больших энергий, пока остаётся неясным.

В зависимости от участия в тех или иных видах взаимодействий все изученные Э. ч., за исключением фотона, разбиваются на две основные группы: адроны (от греческого hadros - большой, сильный) и лептоны (от греческого leptos - мелкий, тонкий, лёгкий). Адроны характеризуются прежде всего тем, что они обладают сильными взаимодействиями, наряду с электромагнитными и слабыми, тогда как лептоны участвуют только в электромагнитных и слабых взаимодействиях. (Наличие общих для той и другой группы гравитационных взаимодействий подразумевается.) Массы адронов по порядку величины близки к массе протона (т р); минимальную массу среди адронов имеет p-мезон: т p "м 1/7×т р. Массы лептонов, известных до 1975-76, были невелики (0,1 m p), однако новейшие данные, видимо, указывают на возможность существования тяжёлых лептонов с такими же массами, как у адронов. Первыми исследованными представителями адронов были протон и нейтрон, лептонов - электрон. Фотон, обладающий только электромагнитными взаимодействиями, не может быть отнесён ни к адронам, ни к лептонам и должен быть выделен в отд. группу. По развиваемым в 70-х гг. представлениям фотон (частица с нулевой массой покоя) входит в одну группу с очень массивными частицами - т. н. промежуточными векторными бозонами, ответственными за слабые взаимодействия и пока на опыте не наблюдавшимися (см. раздел Элементарные частицы и квантовая теория поля).

Характеристики элементарных частиц.

Каждая Э. ч., наряду со спецификой присущих ей взаимодействий, описывается набором дискретных значений определённых физических величин, или своими характеристиками. В ряде случаев эти дискретные значения выражаются через целые или дробные числа и некоторый общий множитель - единицу измерения; об этих числах говорят как о квантовых числах Э. ч. и задают только их, опуская единицы измерения.

Общими характеристиками всех Э. ч. являются масса (m), время жизни (t), спин (J) и электрический заряд (Q). Пока нет достаточного понимания того, по какому закону распределены массы Э. ч. и существует ли для них какая-то единица измерения.

В зависимости от времени жизни Э. ч. делятся на стабильные, квазистабильные и нестабильные (резонансы). Стабильными, в пределах точности современных измерений, являются электрон (t > 5×10 21 лет), протон (t > 2×10 30 лет), фотон и нейтрино. К квазистабильным относят частицы, распадающиеся за счёт электромагнитных и слабых взаимодействий. Их времена жизни > 10 -20 сек (для свободного нейтрона даже ~ 1000 сек). Резонансами называются Э. ч., распадающиеся за счёт сильных взаимодействий. Их характерные времена жизни 10 -23 -10 -24 сек. В некоторых случаях распад тяжёлых резонансов (с массой ³ 3 Гэв) за счёт сильных взаимодействий оказывается подавленным и время жизни увеличивается до значений - ~10 -20 сек.

Спин Э. ч. является целым или полуцелым кратным от величины. В этих единицах спин p- и К-мезонов равен 0, у протона, нейтрона и электрона J= 1/2, у фотона J = 1. Существуют частицы и с более высоким спином. Величина спина Э. ч. определяет поведение ансамбля одинаковых (тождественных) частиц, или их статистику (В. Паули, 1940). Частицы полуцелого спина подчиняются Ферми - Дирака статистике (отсюда название фермионы), которая требует антисимметрии волновой функции системы относительно перестановки пары частиц (или нечётного числа пар) и, следовательно, "запрещает" двум частицам полуцелого спина находиться в одинаковом состоянии (Паули принцип). Частицы целого спина подчиняются Бозе - Эйнштейна статистике (отсюда название бозоны), которая требует симметрии волновой функции относительно перестановок частиц и допускает нахождение любого числа частиц в одном и том же состоянии. Статистические свойства Э. ч. оказываются существенными в тех случаях, когда при рождении или распаде образуется несколько одинаковых частиц. Статистика Ферми - Дирака играет также исключительно важную роль в структуре ядер и определяет закономерности заполнения электронами атомных оболочек, лежащие в основе периодической системы элементов Д. И. Менделеева.

Электрические заряды изученных Э. ч. являются целыми кратными от величины е "1,6×10 -19 к, называются элементарным электрическим зарядом. У известных Э. ч. Q = 0, ±1, ±2.

Помимо указанных величин Э. ч. дополнительно характеризуются ещё рядом квантовых чисел, называются внутренними. Лептоны несут специфический лептонный заряд L двух типов: электронный (L e) и мюонный (L m); L e = +1 для электрона и электронного нейтрино, L m = +1 для отрицательного мюона и мюонного нейтрино. Тяжёлый лептон t; и связанное с ним нейтрино, по-видимому, являются носителями нового типа лептонного заряда L t .

Для адронов L = 0, и это ещё одно проявление их отличия от лептонов. В свою очередь, значительные части адронов следует приписать особый барионный заряд В (|Е| = 1). Адроны с В = +1 образуют подгруппу барионов (сюда входят протон, нейтрон, гипероны, барионные резонансы), а адроны с В = 0 - подгруппу мезонов (p- и К-мезоны, бозонные резонансы). Название подгрупп адронов происходит от греческих слов barýs - тяжёлый и mésos - средний, что на начальном этапе исследований Э. ч. отражало сравнительные величины масс известных тогда барионов и мезонов. Более поздние данные показали, что массы барионов и мезонов сопоставимы. Для лептонов В = 0. Для фотона В = 0 и L = 0.

Барионы и мезоны подразделяются на уже упоминавшиеся совокупности: обычных (нестранных) частиц (протон, нейтрон, p-мезоны), странных частиц (гипероны, К-мезоны) и очарованных частиц. Этому разделению отвечает наличие у адронов особых квантовых чисел: странности S и очарования (английское charm) Ch с допустимыми значениями: 151 = 0, 1, 2, 3 и |Ch| = 0, 1, 2, 3. Для обычных частиц S = 0 и Ch = 0, для странных частиц |S| ¹ 0, Ch = 0, для очарованных частиц |Ch| ¹ 0, а |S| = 0, 1, 2. Вместо странности часто используется квантовое число гиперзаряд Y = S + В, имеющее, по-видимому, более фундаментальное значение.

Уже первые исследования с обычными адронами выявили наличие среди них семейств частиц, близких по массе, с очень сходными свойствами по отношению к сильным взаимодействиям, но с различными значениями электрического заряда. Протон и нейтрон (нуклоны) были первым примером такого семейства. Позднее аналогичные семейства были обнаружены среди странных и (в 1976) среди очарованных адронов. Общность свойств частиц, входящих в такие семейства, является отражением существования у них одинакового значения специального квантового числа - изотопического спина I, принимающего, как и обычный спин, целые и полуцелые значения. Сами семейства обычно называются изотопическими мультиплетами. Число частиц в мультиплете (п)связано с I соотношением: n = 2I + 1. Частицы одного изотопического мультиплета отличаются друг от друга значением "проекции" изотопического спина I 3 , и

Важной характеристикой адронов является также внутренняя чётность Р, связанная с операцией пространств, инверсии: Р принимает значения ±1.

Для всех Э. ч. с ненулевыми значениями хотя бы одного из зарядов О, L, В, Y (S) и очарования Ch существуют античастицы с теми же значениями массы т, времени жизни t, спина J и для адронов изотопического спина 1, но с противоположными знаками всех зарядов и для барионов с противоположным знаком внутренней чётности Р. Частицы, не имеющие античастиц, называются абсолютно (истинно) нейтральными. Абсолютно нейтральные адроны обладают специальным квантовым числом - зарядовой чётностью (т. е. чётностью по отношению к операции зарядового сопряжения) С со значениями ±1; примерами таких частиц могут служить фотон и p 0 .

Квантовые числа Э. ч. разделяются на точные (т. е. такие, которые связаны с физическими величинами, сохраняющимися во всех процессах) и неточные (для которых соответствующие физические величины в части процессов не сохраняются). Спин J связан со строгим законом сохранения момента количества движения и потому является точным квантовым числом. Другие точные квантовые числа: Q, L, В; по современным данным, они сохраняются при всех превращениях Э. ч. Стабильность протона есть непосредственное выражение сохранения В (нет, например, распада р ® е + + g). Однако большинство квантовых чисел адронов неточные. Изотопический спин, сохраняясь в сильных взаимодействиях, не сохраняется в электромагнитных и слабых взаимодействиях. Странность и очарование сохраняются в сильных и электромагнитных взаимодействиях, но не сохраняются в слабых взаимодействиях. Слабые взаимодействия изменяют также внутреннюю и зарядовую чётности. С гораздо большей степенью точности сохраняется комбинированная чётность СР, однако и она нарушается в некоторых процессах, обусловленных слабыми взаимодействиями. Причины, вызывающие несохранение многих квантовых чисел адронов, неясны и, по-видимому, связаны как с природой этих квантовых чисел, так и с глубинной структурой электромагнитных и слабых взаимодействий. Сохранение или несохранение тех или иных квантовых чисел - одно из существенных проявлений различий классов взаимодействий Э. ч.

Классификация элементарных частиц.

Унитарная симметрия. Классификация лептонов пока не представляет проблем, большое же число адронов, известных уже в начале 50-х гг., явилось основанием для поиска закономерностей в распределении масс и квантовых чисел барионов и мезонов, которые могли бы составить основу их классификации. Выделение изотопических мультиплетов адронов было первым шагом на этом пути. С математической точки зрения группировка адронов в изотопические мультиплеты отражает наличие у них симметрии, связанной с группой вращения (см. Группа), более формально, с группой SU (2) - группой унитарных преобразований в комплексном двумерном пространстве. Предполагается, что эти преобразования действуют в некотором специфическом внутреннем пространстве - "изотопическом пространстве", отличном от обычного. Существование изотопического пространства проявляется только в наблюдаемых свойствах симметрии. На математическом языке изотопические мультиплеты суть неприводимые представления группы симметрии SU (2).

Концепция симметрии как фактора, определяющего существование различных групп и семейств Э. ч., в современной теории является доминирующей при классификации адронов и других Э. ч. Предполагается, что внутренние квантовые числа Э. ч., позволяющие выделять те или иные группы частиц, связаны со специальными типами симметрий, возникающими за счёт свободы преобразований в особых "внутренних" пространствах. Отсюда и происходит название "внутренние квантовые числа".

Внимательное рассмотрение показывает, что странные и обычные адроны в совокупности образуют более широкие объединения частиц с близкими свойствами, чем изотопические мультиплеты. Они называются супермультиплетами. Число частиц, входящих в наблюдаемые супермультиплеты, равно 8 и 10. С точки зрения симметрий возникновение супермультиплетов истолковывается как проявление существования у адронов группы симметрии более широкой, чем группа SU (2), а именно: SU (3) - группы унитарных преобразований в трёхмерном комплексном пространстве (М. Гелл-Ман и независимо Ю. Нееман, 1961). Соответствующая симметрия получила назв. унитарной симметрии. Группа SU (3)имеет, в частности, неприводимые представления с числом компонент 8 и 10, отвечающие наблюдаемым супермультиплетам: октету и декуплету. Примерами могут служить следующие группы частиц с одинаковыми значениями J P:

Общими для всех частиц в супермультиплете являются значения двух величин, которые по математической природе близки к изотопическому спину и поэтому часто называются унитарным спином. Для октета значения связанных с этими величинами квантовых чисел равны (1, 1), для декуплета - (3, 0).

Унитарная симметрия менее точная, чем изотопическая симметрия. В соответствии с этим различие в массах частиц, входящих в октеты и декуплеты, довольно значительно. По этой же причине разбиение адронов на супермультиплеты сравнительно просто осуществляется для Э. ч. не очень высоких масс. При больших массах, когда имеется много различных частиц с близкими массами, это разбиение осуществляется менее надёжно. Однако в свойствах Э. ч. имеется много разнообразных проявлений унитарной симметрии.

Включение в систематику Э. ч. очарованных адронов позволяет говорить о сверхсупермультиплетах и о существовании ещё более широкой симметрии, связанной с унитарной группой SU (4). Примеры до конца заполненных сверхсупермультиплетов пока отсутствуют. SU (4)-симметрия нарушена ещё сильнее, чем SU (3)-симметрия, и её проявления выражены слабее.

Обнаружение у адронов свойств симметрии, связанных с унитарными группами, и закономерностей разбиения на мультиплеты, отвечающих строго определённым представлениям указанных групп, явилось основой для вывода о существовании у адронов особых структурных элементов - кварков.

Кварковая модель адронов. Развитие работ по классификации адронов с первых своих шагов сопровождалось попытками выделить среди них частицы более фундаментальные, чем остальные, которые могли бы стать основой для построения всех адронов. Начало этой линии исследования было положено Э. Ферми и Ян Чжэнь-нином (1949), которые предположили, что такими фундаментальными частицами являются нуклон (N) и антинуклон (), a p-мезоны есть их связанные состояния (). При дальнейшем развитии этой идеи в число фундаментальных частиц были включены также странные барионы (М. А. Марков, 1955; японский физик С. Саката, 1956; Л. Б. Окунь, 1957). Модели, построенные на этой основе, хорошо описывали мезонные мультиплеты, но не давали правильного описания мультиплетов барионов. Важнейший элемент данных моделей - использование для "построения" адронов небольшого числа фермионов - органически вошёл в модель, которая наиболее успешно решает задачу описания всех адронов, - кварковую модель (австрийский физик Г. Цвейг и независимо М. Гелл-Ман, 1964).

В первоначальном варианте в основу модели было положено предположение, что все известные адроны построены из трёх типов частиц спина 1 / 2 , названных р-, n-, l-кварками, не принадлежащих к числу наблюдавшихся адронов и обладающих весьма необычными свойствами. Название "кварки" заимствовано из романа Дж. Джойса (см. Кварки). Современный вариант модели предполагает существование как минимум четырёх типов кварков. Четвёртый кварк необходим для описания очарованных адронов.

Идея кварков подсказана унитарной симметрией. Математическая структура унитарных групп открывает возможность описания всех представлений группы SU (n ) (и, следовательно, всех мультиплетов адронов) на основе самого простого представления группы, содержащего n компонент. В случае группы SU (3)таких компонент три. Необходимо только допустить наличие частиц, связанных с этим простейшим представлением. Эти частицы и есть кварки. Кварковый состав мезонов и барионов был выведен из того факта, что супермультиплеты мезонов содержат, как правило, 8 частиц, а барионов - 8 и 10 частиц. Эта закономерность легко воспроизводится, если предположить, что мезоны составлены из кварка q и антикварка - символически: , а барионы из трёх кварков - символически: В = (qqq ). В силу свойств группы SU (3) 9 мезонов разбиваются на супермультиплеты из 1 и 8 частиц, а 27 барионов - на супермультиплеты, содержащие 1, 10 и дважды по 8 частиц, что и объясняет наблюдаемую выделенность октетов и декуплетов.

Добавление к схеме четвёртого кварка (и, если окажется необходимым, новых дополнительных кварков) осуществляется при сохранении основного предположения кварковой модели о строении адронов:

В = (qqq ).

Все экспериментальные данные хорошо соответствуют приведённому кварковому составу адронов. Имеются, видимо, лишь небольшие отклонения от этой структуры, которые не влияют существенным образом на свойства адронов.

Указанная структура адронов и математические свойства кварков, как объектов, связанных с определённым (простейшим) представлением группы SU (4), приводят к след. квантовым числам кварков (табл. 2). Обращают внимание необычные - дробные - значения электрического заряда Q , а также В, S и Y , не встречающиеся ни у одной из наблюдавшихся Э. ч. С индексом a у каждого типа кварка q i (i = 1, 2, 3, 4) связана особая характеристика кварков - "цвет", которой нет у изученных адронов. Индекс a принимает значения 1, 2, 3, т, е. каждый тип кварка q i представлен тремя разновидностями q i a (Н. Н. Боголюбов с сотрудниками, 1965; американские физики И. Намбу и М. Хан, 1965; японский физик И. Миямото, 1965). Квантовые числа каждого типа кварка не меняются при изменении "цвета" и поэтому табл. 2 относится к кваркам любого "цвета".

Всё многообразие адронов возникает за счёт различных сочетаний р -, п-, g- и с -кварков, образующих связанные состояния. Обычным адронам соответствуют связанные состояния, построенные только из р- и n -кварков [для мезонов с возможным участием комбинаций и ]. Наличие в связанном состоянии наряду с р - и n -кварками одного g- или с -кварка означает, что соответствующий адрон странный (S = -1) или очарованный (Ch = + 1). В состав бариона может входить два и три g -кварка (соответственно с -кварка), т. е. возможны дважды и трижды странные (очарованные) барионы. Допустимы также сочетания различного числа g- и с- кварков (особенно в барионах), которые соответствуют "гибридным" формам адронов ("странно-очарованным"). Очевидно, что чем больше g- или с -кварков содержит адрон, тем он тяжелее. Если сравнивать основные (не возбуждённые) состояния адронов, именно такая картина и наблюдается (см. табл. 1, а также табл. 3 и 5).

Поскольку спин кварков равен 1 / 2 , приведённая выше кварковая структура адронов имеет своим следствием целочисленный спин у мезонов и полуцелый - у барионов, в полном соответствии с экспериментом. При этом в состояниях, отвечающих орбитальному моменту l = 0, в частности в основных состояниях, значения спина мезонов должны равняться 0 или 1 (для антипараллельной ґ¯ и параллельной ґґ ориентации спинов кварков), а спина барионов - 1 / 2 или 3 / 2 (для спиновых конфигураций ¯ґґ и ґґґ). С учётом того, что внутренняя чётность системы кварк-антикварк отрицательна, значения J P для мезонов при l = 0 равны 0 - и 1 - , для барионов - 1 / 2 + и 3 / 2 + . Именно эти значения J P наблюдаются у адронов, имеющих наименьшую массу при заданных значениях I и Y (см. табл. 1).

Поскольку индексы i, k, l в структурных формулах пробегают значения 1, 2, 3, 4, число мезонов M ik с заданным спином должно быть равно 16. Для барионов B ikl максимально возможное число состояний при заданном спине (64) не реализуется, т. к. в силу принципа Паули при данном полном спине разрешены только такие трёхкварковые состояния, которые обладают вполне определённой симметрией относительно перестановок индексов i, k, 1, а именно: полностью симметричные для спина 3 / 2 и смешанной симметрии для спина 1 / 2 . Это условие при l = 0 отбирает 20 барионных состояний для спина 3 / 2 и 20 - для спина 1 / 2 .

Более подробное рассмотрение показывает, что значение кваркового состава и свойств симметрии кварковой системы даёт возможность определить все основные квантовые числа адрона (J, Р, В, Q, I, Y, Ch ), за исключением массы; определение массы требует знания динамики взаимодействия кварков и массы кварков, которое пока отсутствует.

Правильно передавая специфику адронов с наименьшими массами и спинами при заданных значениях Y и Ch, кварковая модель естественным образом объясняет также общее большое число адронов и преобладание среди них резонансов. Многочисленность адронов - отражение их сложного строения и возможности существования различных возбуждённых состояний кварковых систем. Не исключено, что число таких возбуждённых состояний неограниченно велико. Все возбуждённые состояния кварковых систем неустойчивы относительно быстрых переходов за счёт сильных взаимодействий в нижележащие состояния. Они и образуют основную часть резонансов. Небольшую долю резонансов составляют также кварковые системы с параллельной ориентацией спинов (за исключением W -). Кварковые конфигурации с антипараллельной ориентацией спинов, относящиеся к осн. состояниям, образуют квазистабильные адроны и стабильный протон.

Возбуждения кварковых систем происходят как за счёт изменения вращательного движения кварков (орбитальные возбуждения), так и за счёт изменения их пространств. расположения (радиальные возбуждения). В первом случае рост массы системы сопровождается изменением суммарного спина J и чётности Р системы, во втором случае увеличение массы происходит без изменения J P . Например, мезоны с J P = 2 + являются первым орбитальным возбуждением (l = 1) мезонов с J P = 1 - . Соответствие 2 + мезонов и 1 - мезонов одинаковых кварковых структур хорошо прослеживается на примере многих пар частиц:

Мезоны r" и y" - примеры радиальных возбуждений r- и y-мезонов соответственно (см.

Орбитальные и радиальные возбуждения порождают последовательности резонансов, отвечающие одной и той же исходной кварковой структуре. Отсутствие надёжных сведений о взаимодействии кварков не позволяет пока производить количественные расчеты спектров возбуждений и делать какие-либо заключения о возможном числе таких возбуждённых состояний.При формулировке кварковой модели кварки рассматривались как гипотетические структурные элементы, открывающие возможность очень удобного описания адронов. В дальнейшем были проведены эксперименты, которые позволяют говорить о кварках как о реальных материальных образованиях внутри адронов. Первыми были эксперименты по рассеянию электронов нуклонами на очень большие углы. Эти эксперименты (1968), напоминающие классические опыты Резерфорда по рассеянию a-частиц на атомах, выявили наличие внутри нуклона точечных заряженных образований. Сравнение данных этих экспериментов с аналогичными данными по рассеянию нейтрино на нуклонах (1973-75) позволило сделать заключение о средней величине квадрата электрического заряда этих точечных образований. Результат оказался удивительно близким к величине 1 / 2 [(2 / 3 e ) 2 +(1 / 3 e ) 2 ]. Изучение процесса рождения адронов при аннигиляции электрона и позитрона, который предположительно идёт через последовательность процессов: ® адроны, указало на наличие двух групп адронов, генетически связанных с каждым из образующихся кварков, и позволило определить спин кварков. Он оказался равным 1/2. Общее число рожденных в этом процессе адронов свидетельствует также о том, что в промежуточном состоянии возникают кварки трёх разновидностей, т. е. кварки трёхцветны.

Т. о., квантовые числа кварков, введённые на основании теоретических соображений, получили подтверждение в ряде экспериментов. Кварки постепенно приобретают статус новых Э. ч. Если дальнейшие исследования подтвердят это заключение, то кварки являются серьёзными претендентами на роль истинно Э. ч. для адронной формы материи. До длин ~ 10 -15 см кварки выступают как точечные бесструктурные образования. Число известных видов кварков невелико. В дальнейшем оно может, конечно, измениться: нельзя поручиться за то, что при более высоких энергиях не будут обнаружены адроны с новыми квантовыми числами, обязанные своим существованием новым типам кварков. Обнаружение Y -мезонов подтверждает эту точку зрения. Но вполне возможно, что увеличение числа кварков будет небольшим, что общие принципы накладывают ограничения на полное число кварков, хотя эти ограничения пока неизвестны. Бесструктурность кварков также, возможно, отражает лишь достигнутый уровень исследования этих материальных образований. Однако ряд специфических особенностей кварков даёт некоторые основания предполагать, что кварки являются частицами, замыкающими цепь структурных составляющих материи.

От всех других Э. ч. кварки отличаются тем, что в свободном состоянии они пока не наблюдались, хотя имеются свидетельства их существования в связанном состоянии. Одной из причин ненаблюдения кварков может быть их очень большая масса, что препятствует их рождению при энергиях современных ускорителей. Не исключено, однако, что кварки принципиально, в силу специфики их взаимодействия, не могут находиться в свободном состоянии. Существуют доводы теоретического и экспериментального характера в пользу того, что силы, действующие между кварками, не ослабляются с расстоянием. Это означает, что для отделения кварков друг от друга требуется бесконечно большая энергия, или, иначе, возникновение кварков в свободном состоянии невозможно. Невозможность выделить кварки в свободном состоянии делает их совершенно новым типом структурных единиц вещества. Неясно, например, можно ли ставить вопрос о составных частях кварков, если сами кварки нельзя наблюдать в свободном состоянии. Возможно, что в этих условиях части кварков физически вообще не проявляются и поэтому кварки выступают как последняя ступень дробления адронной материи.

Элементарные частицы и квантовая теория поля.

Для описания свойств и взаимодействий Э. ч. в современной теории существенное значение имеет понятие физ. поля, которое ставится в соответствие каждой частице. Поле есть специфическая форма материи; оно описывается функцией, задаваемой во всех точках (х )пространства-времени и обладающей определёнными трансформационными свойствами по отношению к преобразованиям группы Лоренца (скаляр, спинор, вектор и т. д.) и групп "внутренних" симметрий (изотопический скаляр, изотопический спинор и т. д.). Электромагнитное поле, обладающее свойствами четырёхмерного вектора А m (х) (m = 1, 2, 3, 4), - исторически первый пример физического поля. Поля, сопоставляемые с Э. ч., имеют квантовую природу, т. е. их энергия и импульс слагаются из множества отд. порций - квантов, причём энергия E k и импульс p k кванта связаны соотношением специальной теории относительности: E k 2 = p k 2 c 2 + m 2 c 2 . Каждый такой квант и есть Э. ч. с заданной энергией E k , импульсом p k и массой т. Квантами электромагнитного поля являются фотоны, кванты других полей соответствуют всем остальным известным Э. ч. Поле, т. о., есть физическое отражение существования бесконечной совокупности частиц - квантов. Специальный математический аппарат квантовой теории поля позволяет описать рождение и уничтожение частицы в каждой точке х.

Трансформационные свойства поля определяют все квантовые числа Э. ч. Трансформационные свойства по отношению к преобразованиям пространства-времени (группе Лоренца) задают спин частиц. Так, скаляру соответствует спин 0, спинору - спин 1 / 2 , вектору - спин 1 и т. д. Существование таких квантовых чисел, как L, В, 1, Y, Ch и для кварков и глюонов "цвет", следует из трансформационных свойств полей по отношению к преобразованиям "внутренних пространств" ("зарядового пространства", "изотопического пространства", "унитарного пространства" и т. д.). Существование "цвета" у кварков, в частности, связывается с особым "цветным" унитарным пространством. Введение "внутренних пространств" в аппарате теории - пока чисто формальный приём, который, однако, может служить указанием на то, что размерность физического пространства-времени, отражающаяся в свойствах Э. ч., реально больше четырёх - размерности пространства-времени, характерной для всех макроскопических физических процессов. Масса Э. ч. не связана непосредственно с трансформационными свойствами полей; это дополнительная их характеристика.

Для описания процессов, происходящих с Э. ч., необходимо знать, как различные физические поля связаны друг с другом, т. е. знать динамику полей. В современном аппарате квантовой теории поля сведения о динамике полей заключены в особой величине, выражающейся через поля - лагранжиане (точнее, плотности лагранжиана) L. Знание L позволяет в принципе рассчитывать вероятности переходов от одной совокупности частиц к другой под влиянием различных взаимодействий. Эти вероятности даются т. н. матрицей рассеяния (В. Гейзенберг, 1943), выражающейся через L. Лагранжиан L состоит из лагранжиана L вз, описывающего поведение свободных полей, и лагранжиана взаимодействия L вз, построенного из полей разных частиц и отражающего возможность их взаимопревращений. Знание L вз является определяющим для описания процессов с Э. ч.

Вид L вз однозначно определяется трансформационными свойствами полей относительной группы Лоренца и требованием инвариантности относительно этой группы (релятивистская инвариантность). В течение длительного времени не были, однако, известны критерии для нахождения L вз (за исключением электромагнитных взаимодействий), а сведения о взаимодействиях Э. ч., полученные из эксперимента, в большинстве случаев не позволяли осуществить надёжный выбор между различными возможностями. В этих условиях широкое распространение получил феноменологический подход к описанию взаимодействий, основанный либо на выборе простейших форм L вз, ведущих к наблюдаемым процессам, либо на прямом изучении характерных свойств элементов матрицы рассеяния. На этом пути был достигнут значительный успех в описании процессов с Э. ч. для различных выделенных областей энергий. Однако многие параметры теории заимствовались из эксперимента, а сам подход не мог претендовать на универсальность.

В период 50-70-х гг. был достигнут значительный прогресс в понимании структуры L вз, который позволил существенно уточнить его форму для сильных и слабых взаимодействий. Решающую роль в этом продвижении сыграло выяснение тесной связи между свойствами симметрии взаимодействий Э. ч. и формой L вз.

Симметрия взаимодействий Э. ч. находит своё отражение в существовании законов сохранения определённых физических величин и, следовательно, в сохранении связанных с ними квантовых чисел Э. ч. (см. Сохранения законы). Точная симметрия, имеющая место для всех классов взаимодействий, отвечает наличию у Э. ч. точных квантовых чисел; приближённая симметрия, характерная лишь для некоторых классов взаимодействий (сильных, электромагнитных), приводит к неточным квантовым числам. Отмечавшееся выше различие классов взаимодействий в отношении сохранения квантовых чисел Э. ч. отражает различия в свойствах их симметрии.

Известная форма L вз эл. м. для электромагнитных взаимодействий есть следствие существования очевидной симметрии лагранжиана L относительно умножения комплексных полей j заряженных частиц, входящих в него в комбинациях типа j*j (здесь * означает комплексное сопряжение), на множитель e ia , где a - произвольное действительное число. Эта симметрия, с одной стороны, порождает закон сохранения электрического заряда, с другой стороны, если требовать выполнения симметрии при условии, что a произвольно зависит от точки х пространства-времени, однозначно приводит к лагранжиану взаимодействия:

L вз эл. м. = j m эл. м. (x) A m (x) (1)

где j m эл. м. - четырёхмерный электромагнитный ток (см. Электромагнитные взаимодействия). Как выяснилось, этот результат имеет общее значение. Во всех случаях, когда взаимодействия проявляют "внутреннюю" симметрию, т. е. лагранжиан инвариантен относительно преобразований "внутреннего пространства", а у Э. ч. возникают соответствующие квантовые числа, следует требовать, чтобы инвариантность имела место при любой зависимости параметров преобразования от точки х (т. н. локальная калибровочная инвариантность; Ян Чжэнь-нин, американский физик Р. Миллс, 1954). Физически это требование связано с тем, что взаимодействие не может мгновенно передаваться от точки к точке. Указанное условие удовлетворяется, когда среди полей, входящих в лагранжиан, присутствуют векторные поля (аналоги A m (x)), изменяющиеся при преобразованиях "внутренней" симметрии и взаимодействующие с полями частиц вполне определённым образом, а именно:

L вз = å r=1 n j m r (x) V m r (x), (2)

где j m r (x) - токи, составленные из полей частиц, V m r (x) - векторные поля, называются часто калибровочными полями. Т. о., требование локальности "внутренней" симметрии фиксирует форму L вз и выделяет векторные поля как универсальные переносчики взаимодействий. Свойства векторных полей и их число "n" определяются свойствами группы "внутренней" симметрии. Если симметрия точная, то масса кванта поля V m r равна 0. Для приближенной симметрии масса кванта векторного поля отлична от нуля. Вид тока j m r определяется полями частиц с ненулевыми квантовыми числами, связанными с группой "внутренней" симметрии.

На основании изложенных принципов оказалось возможным подойти к вопросу о взаимодействии кварков в нуклоне. Эксперименты по рассеянию нейтрино и антинейтрино на нуклоне показали, что импульс нуклона лишь частично (примерно на 50%) переносится кварками, а остальная его часть переносится другим видом материи, которая не взаимодействует с нейтрино. Предположительно эта часть материи состоит из частиц, которыми обмениваются кварки и за счёт которых они удерживаются в нуклоне. Эти частицы получили название "глюонов" (от английского glue - клей). С изложенной выше точки зрения на взаимодействия эти частицы естественно считать векторными. В современной теории их существование связывается с симметрией, обусловливающей появление "цвета" у кварков. Если эта симметрия точная (цветная SU (3)-симметрия), то глюоны - безмассовые частицы и их число равно восьми (американский физик И. Намбу, 1966). Взаимодействие кварков с глюонами даётся L вз со структурой (2), где ток j m r составлен из полей кварков. Имеется и основание предполагать, что взаимодействие кварков, обусловленное обменом безмассовыми глюонами, приводит к силам между кварками, не убывающим с расстоянием, но строго это не доказано.

Принципиально знание взаимодействия между кварками могло бы явиться основой для описания взаимодействия всех адронов между собой, т. е. всех сильных взаимодействий. Это направление в физике адронов быстро развивается.

Использование принципа определяющей роли симметрии (в т. ч. приближённой) в формировании структуры взаимодействия позволило также продвинуться в понимании природы лагранжиана слабых взаимодействий. Одновременно была вскрыта глубокая внутренняя связь слабых и электромагнитных взаимодействий. В указанном подходе наличие пар лептонов с одинаковым лептонным зарядом: е - , v e и m - , v m , но различными массами и электрическими зарядами расценивается не как случайное, а как отражающее существование нарушенной симметрии типа изотонической (группа SU (2)). Применение принципа локальности к этой "внутренней" симметрии приводит к характерному лагранжиану (2), в котором одновременно возникают члены, ответственные за электромагнитное и слабое взаимодействия (американский физик С. Вайнберг, 1967; А. Салам, 1968):

L вз = j m эл. м. + A m + j m сл. з. W m + + j m сл. з. W m - + j m сл. н. Z m 0 (3)

Здесь j m сл. з. , j m сл. н. - заряженный и нейтральный токи слабых взаимодействий, построенные из полей лептонов, W m + , W m - , Z m 0 - поля массивных (из-за нарушенности симметрии) векторных частиц, которые в этой схеме являются переносчиками слабых взаимодействий (т. н. промежуточные бозоны), A m - поле фотона. Идея существования заряженного промежуточного бозона была выдвинута давно (Х. Юкава, 1935). Важно, однако, что в данной модели единой теории электрон магнитного и слабого взаимодействий заряженный промежуточный бозон появляется на равной основе с фотоном и нейтральным промежуточным бозоном. Процессы слабых взаимодействий, обусловленные нейтральными токами, были обнаружены в 1973, что подтверждает правильность только что изложенного подхода к формулировке динамики слабых взаимодействий. Возможны и другие варианты написания лагранжиана L вз сл с большим числом нейтральных и заряженных промежуточных бозонов; для окончательного выбора лагранжиана экспериментальных данных ещё недостаточно.

Экспериментально промежуточные бозоны пока не обнаружены. Из имеющихся данных массы W ± и Z 0 для модели Вайнберга - Салама оцениваются примерно в 60 и 80 Гэв.

Электромагнитное и слабое взаимодействия кварков можно описать в рамках модели, аналогичной модели Вайнберга - Салама. Рассмотрение на этой основе электромагнитных и слабых взаимодействий адронов даёт хорошее соответствие наблюдаемым данным. Общей проблемой при построении таких моделей является неизвестное пока полное число кварков и лептонов, что не позволяет определить тип исходной симметрии и характер её нарушения. Поэтому очень важны дальнейшие экспериментальные исследования.

Единое происхождение электромагнитных и слабых взаимодействий означает, что в теории исчезает как независимый параметр константа слабых взаимодействий. Единственной константой остаётся электрический заряд е. Подавленность слабых процессов при небольших энергиях объясняется большой массой промежуточных бозонов. При энергиях в системе центра масс, сравнимых с массами промежуточных бозонов, эффекты электромагнитных и слабых взаимодействий должны быть одного порядка. Последние, однако, будут отличаться несохранением ряда квантовых чисел (P, Y, Ch и т. д.).

Имеются попытки рассмотреть на единой основе не только электромагнитные и слабые, но также и сильные взаимодействия. Исходным для таких попыток является предположение об единой природе всех видов взаимодействий Э. ч. (без гравитационного). Наблюдаемые сильные различия между взаимодействиями считаются обусловленными значительным нарушением симметрии. Эти попытки ещё недостаточно разработаны и сталкиваются с серьёзными трудностями, в частности в объяснении различий свойств кварков и лептонов.

Развитие метода получения лагранжиана взаимодействия, основанного на использовании свойств симметрии, явилось важным шагом на пути, ведущем к динамической теории Э. ч. Есть все основания думать, что калибровочные теории поля явятся существенным составным элементом дальнейших теоретических построений.

Заключение

Некоторые общие проблемы теории элементарных частиц. Новейшее развитие физики Э. ч. явно выделяет из всех Э. ч. группу частиц, которые существенным образом определяют специфику процессов микромира. Эти частицы - возможные кандидаты на роль истинно Э. ч. К их числу принадлежат: частицы со спином 1 / 2 - лептоны и кварки, а также частицы со спином 1 - глюоны, фотон, массивные промежуточные бозоны, осуществляющие разные виды взаимодействий частиц со спином 1 / 2 . В эту группу скорее всего следует также включить частицу со спином 2 - гравитон; квант гравитационного поля, связывающий все Э. ч. В этой схеме многие вопросы, однако, требуют дальнейшего исследования. Неизвестно, каково полное число лептонов, кварков и различных векторных (с J = 1) частиц и существуют ли физические принципы, определяющие это число. Неясны причины деления частиц со спином 1 / 2 на 2 различные группы: лептоны и кварки. Неясно происхождение внутренних квантовых чисел лептонов и кварков (L, В, 1, Y, Ch) и такой характеристики кварков и глюонов, как "цвет". С какими степенями свободы связаны внутренние квантовые числа? С обычным четырёхмерным пространством-временем связаны только такие характеристики Э. ч., как J и Р. Какой механизм определяет массы истинно Э. ч.? Чем обусловлено наличие у Э. ч. различных классов взаимодействий с различными свойствами симметрии? Эти и другие вопросы предстоит решить будущей теории Э. ч.

Описание взаимодействий Э. ч., как отмечалось, связано с калибровочными теориями поля. Эти теории имеют развитый математический аппарат, который позволяет производить расчёты процессов с Э. ч. (по крайней мере принципиально) на том же уровне строгости, как и в квантовой электродинамике. Но в настоящем своём виде калибровочные теории поля обладают одним серьёзным недостатком, общим с квантовой электродинамикой, - в них в процессе вычислений появляются бессмысленные бесконечно большие выражения. С помощью специального приёма переопределения наблюдаемых величин (массы и заряда) - перенормировки - удаётся устранить бесконечности из окончательных результатов вычислений. В наиболее хорошо изученной электродинамике это пока не сказывается на согласии предсказаний теории с экспериментом. Однако процедура перенормировки- чисто формальный обход трудности, существующей в аппарате теории, которая на каком-то уровне точности должна сказаться на степени согласия расчётов с измерениями.

Появление бесконечностей в вычислениях связано с тем, что в лагранжианах взаимодействий поля разных частиц отнесены к одной точке х, т. е. предполагается, что частицы точечные, а четырёхмерное пространство-время остаётся плоским вплоть до самых малых расстояний. В действительности указанные предположения, по-видимому, неверны по нескольким причинам: а) истинно Э. ч., вероятнее всего, - материальные объекты конечной протяжённости; б) свойства пространства-времени в малом (в масштабах, определяемых т. н. фундаментальной длиной) скорее всего радикально отличны от его макроскопических свойств; в) на самых малых расстояниях (~10 -33 см) сказывается изменение геометрических свойств пространства-времени за счёт гравитации. Возможно, эти причины тесно связаны между собой. Так, именно учёт гравитации наиболее естественно приводит к размерам истинно Э. ч. порядка 10 -33 см, а фундамент, длина l 0 может быть связана с гравитационной постоянной f: " 10 -33 см. Любая из этих причин должна привести к модификации теории и устранению бесконечностей, хотя практическое выполнение этой модификации может быть весьма сложным.

Очень интересным представляется учёт влияния гравитации на малых расстояниях. Гравитационное взаимодействие может не только устранять расходимости в квантовой теории поля, но и обусловливать само существование первообразующих материи (М. А. Марков, 1966). Если плотность вещества истинно Э. ч. достаточно велика, гравитационное притяжение может явиться тем фактором, который определяет устойчивое существование этих материальных образований. Размеры таких образований должны быть ~10 -33 см. В большинстве экспериментов они будут вести себя как точечные объекты, их гравитационное взаимодействие будет ничтожно мало и проявится лишь на самых малых расстояниях, в области, где существенно изменяется геометрия пространства.

Т. о., наметившаяся тенденция к одновременному рассмотрению различных классов взаимодействий Э. ч. скорее всего должна быть логически завершена включением в общую схему гравитационного взаимодействия. Именно на базе одновременного учёта всех видов взаимодействий наиболее вероятно ожидать создания будущей теории Э. ч.

Список используемой литературы

1) Марков М.А. О природе материи. М., 1976

2) Газиорович С. Физика элементарных частиц, пер. с английского, М. 1969

3) Коккедэ Я., Теория кварков, пер. с англ., М., 1971

4) И., Иоффе Б. Л., Окунь Л. Б., Новые элементарные частицы, "Успехи физических наук", 1975, т. 117, в. 2, с. 227

5) Боголюбов Н. Н., Ширков Д. В., Введение в теорию квантованных полей, 3 изд., М., 1976;

6) Новости фундаментальной физики, пер. с англ., М., 1977, с 120-240 .

Похожие статьи